
Journal of Network and Innovative Computing

ISSN 2160-2174 Volume 4 (2016) pp. 037-045

© MIR Labs, www.mirlabs.net/jnic/index.html

Dynamic Publishers, Inc., USA

Transformation by modeling with MOF 2.0 QVT:

From UML model to Model-View-Presenter pattern

Redouane Esbai1 and Mohammed Erramdani2

1 MATSI Laboratory, ESTO, Mohammed First University,

Oujda, Morocco

es.redouane@gmail.com

2 MATSI Laboratory, ESTO, Mohammed First University,

Oujda, Morocco

mramdani69@yahoo.com

Abstract: The continuing evolution of business needs and

technology makes Web applications more demanding in terms of

development, usability and interactivity of their user interfaces.

The complexity and diversity of these applications emerges the

need of flexibility and combining operations with existing models

to create other new, more complex models. As more complex

models are used, the importance of transformations between

models grows. This paper presents the application of the MDA

(Model Driven Architecture) to generate, from the UML model,

the code following the MVP (Model-View-Presenter), DI

(Dependency Injection) and DAO (Data Access Object) patterns

for a RIA (Rich Internet Application) using the standard MOF

2.0 QVT (Meta-Object Facility 2.0 Query-View-Transformation)

as a transformation language. We adopt GWT (Google web

Toolkit), Spring and Hibernate as a Frameworks for creating a

target meta-model to generate an entire GWT-based N-tiers web

application. That is why we have developed two meta-models

handling UML class diagrams and N-tiers Web applications,

then we have to set up transformation rules. The transformation

rules defined in this paper can generate, from the class diagram,

an XML file containing the Presentation, the Business, and the

Data Access package. This file can be used to generate the

necessary code of a RIA N-tiers web application.

Keywords: GWT, Model Transformation, Model View Presenter,

dependency Injection, MOF 2.0 QVT, transformation.

I. Introduction

In recent years many organizations have begun to consider

MDA (Model Driven Architecture) as an approach to design

and implement enterprise applications. The key principle of

MDA is the use of models at different phases of application

development by implementing many transformations [47].

The goal of this transformation is to come to a technical

solution on a chosen platform from independent business

models of any platform [1]. These changes are present in

MDA, and help transform a CIM (Computation Independent

Model) into a PIM (Platform Independent Model) or to obtain

a PSM (Platform Specific Model) from a PIM [49].

In fact, the technological advances of RIAs (Rich Internet

applications) require from the developer to represent a rich

user interface based on the composition of Graphical User

Interface (GUI) widgets, to define an event-based

choreography between these widgets and to establish a fine

grained communication between the client and the server

layers.

The Presentation Layer of a RIA should not include too much

business logic, instead it will communicate with a Web Server

to perform business operations. This is done by accessing a

Business Layer which in turn will communicate with the DAO

Model.

In a recent work [2], the authors have developed a source and a

target meta-model. The first was a PIM meta-model specific to

class diagrams. The second was a PSM meta-model for MVP

(Model-View-Presenter) web applications (particularly GWT),

then they have elaborated transformation rules using the

approach by modeling. The purpose of our contribution is to

produce and generate an N-tiers PSM model, implementing

MVP, DI (Dependency Injection) and DAO (Data Access

Object) patterns, from the class diagram. In this case, we

elaborate a number of transformation rules using the approach

by modeling and MOF 2.0 QVT, as transformation language,

to permit the generation of an XML file that can be used to

produce the required code of the target application. The

advantage of this approach is the bidirectional execution of

transformation rules.

This paper is organized as follows: related works are presented

in the second section, the third section defines the MDA

approach, and the fourth section presents the MVP, DI and

DAO patterns and its implementation as frameworks, GWT,

Spring and Hibernate in this case. The transformation

language MOF 2.0 QVT is the subject of the fifth section. In

the sixth section, we present the UML, GWT and N-tiers

meta-models. In the seventh section, we present the

transformation rules using QVT operational from UML source

model to the GWT and N-tiers target model. The last section

concludes this paper and presents some perspectives.

II. Related works

Many researches on MDA and generation of code have been

conducted in recent years.

Esbai wt al. 38

The authors of the work [3] show how to generate JSPs and

JavaBeans using the UWE [4], and the ATL transformation

language [5] [45]. Among future works cited, the authors

considered the integration of AJAX into the engineering

process of UWE.

Two other works followed the same logic and have been the

subject of two works [6] [7]. A meta-model for Ajax was

defined using AndroMDA[41] tool. The generation of Ajax

code has been illustrated by an application CRUD (Create,

Read, Update, and Delete) that manages people.

Meliá, Pérez and Díaz propose in [8] a new approach called

OOH4RIA which proposes a model driven development

process that extends OOH methodology. It introduces new

structural and behavioral models in order to represent a

complete RIA and to apply transformations that reduce the

effort and accelerate its development. In another work [9] they

present a tool called OIDE (OOH4RIA Integrated

Development Environment) aimed at accelerating the RIAs

development through the OOH4RIA approach which

establishes a RIA-specific model-driven process.

The Web Modeling Language (WebML) [10] is a visual

notation for specifying the structure and navigation of legacy

web applications. The notation greatly resembles UML class

and Entity-Relation diagrams. Presentation in WebML is

mainly focused on look and feel and lacks the degree of

notation needed for AJAX web user interfaces [11] [12].

Nasir, Hamid and Hassan [13] have presented an approach to

generate a code for the dotNet application Student Nomination

Management System. The method used is WebML and the

code was generated by applying the MDA approach, but the

creation was not done according to the dotNet MVC2 logic.

This paper aims to finalize the work presented in [2] [14], by

applying the standard MOF 2.0 QVT to develop the

transformation rules aiming at generating the N-tiers and

GWT target model with UI.

III. Model Driven Architecture

In November 2000, OMG, a consortium of over 1 000

companies, initiated the MDA approach. The key principle of

MDA is the use of models at different phases of application

development. Specifically, MDA advocates the development

of requirements models (CIM), analysis and design (PIM) and

code (PSM).

The major objective of MDA [1] is to develop sustainable

models; those models are independent from the technical

details of platforms implementation (JavaEE, .Net, PHP or

other), in order to enable the automatic generation of all codes

and applications leading to a significant gain in productivity.

MDA includes the definition of several standards, including

UML [17], MOF [18] and XMI [19].

IV. N-Tiers architecture

In this paper, we are using the following layers:

1. Presentation Layer

2. Business Layer

3. Data Access Layer

4. Database/Data store

The presentation layer contains the components that

implement and display the user interface and manage user

interaction. This layer includes controls for user input and

display, in addition to components that organize user

interaction [42].

The business layer makes all the application decisions. This is

where the "business logic" is located. The application logic

knows what is possible, and what is allowed. The application

logic reads and stores data in the data access tier.

The data layer stores the data used in the application. The data

layer can typically store data safely, perform transactions,

search through large amounts of data quickly.

Each Layer can be developed independently of the other

provided that it adheres to the standards and communicates

with the other layers.

A. Title and The presentation Layer with MVP pattern

The Model View Presenter is a derivative of the Model View

Controller Pattern. Its aim is to provide a cleaner

implementation of the Observer connection between

Application Model and View.

Figure 1 shows the architecture of the MVP pattern. The main

feature of this pattern is to be composed of:

 The model is an interface defining the data to be displayed

or otherwise acted upon in the user interface.

 The view is a passive interface that displays data (the

model) and routes user commands (events) to the presenter

to act upon that data.

 The presenter acts upon the model and the view. It

retrieves data from repositories (the model), and formats it

for display in the view.

Figure 1. MVP Architecture

Based on this model many frameworks are designed to help

developers build the presentation layer of their user interfaces.

In the Java community, many frameworks that implements

MVP pattern have emerged, among them: Mvp4g [20], GWT

[21], Echo2 [22], JFace [23], Vaadin [24], ZK [25],

Nucleo .NET [26]. The GWT project is one of the best

examples. Implementing MVP in Google Web Toolkit

requires only that some component implement the view

interface.

B. The GWT framework

Google Web Toolkit (GWT) [27] is an open source web

development framework that allows developers to easily

create high-performance AJAX applications using Java. With

GWT, you are able to write your front end in Java, and it

compiles your source code into highly optimized,

browser-compliant JavaScript and HTML.

However, GWT is not the only framework for managing the

user interfaces. Indeed, other frameworks have been designed

How to Format Your Paper for JIAS 39

for the same goal, but GWT is the most mature. The main

advantage of GWT is the reduced complexity compared to

other frameworks of the same degree of power, for instance,

JFace, Flex and Vaadin.

C. The Business layer with Data Transfer Object and

Dependency Injection patterns

Business logic layer is the Layer of abstraction between the

presentation layer and persistence layer to avoid a strong

coupling between these two layers and hide the complexity of

the implementation of business processing to presentation

layer. All business treatments will be implemented by this

layer. The implementation of this layer is produced by the

DTO pattern to render the result of running the service and the

DI pattern to ensure a decoupling between objects [43].

In an article written in early 2004, Martin Fowler asked what

aspect of control is being inverted. He concluded that it is the

acquisition of dependent objects that is being inverted. Based

on that revelation, he coined a better name for inversion of

control: dependency injection [28].

In other words, Dependency Injection is a worthwhile concept

used within applications that we develop. Not only can it

reduce coupling between components, but it also saves us from

writing boilerplate factory creation code over and over again.

Many frameworks that implements DI pattern have emerged,

among them: Spring [29], Symfony dependency injection [31],

Spring.NET [30], EJB [32], PicoContainer [33]. (We have

used some Spring classes in our source meta-model).

D. The persistence Layer with DAO pattern

This layer is the entry point to the database. All operations

required to create, retrieve, update, and delete data in the

database are implemented in the components of this layer.

The Data Access Object (DAO) pattern is now a widely

accepted mechanism to abstract the details of persistence in an

application. In practice, it is not always easy to make our

DAO's fully hidden in the underlying persistence layer.

The advantage of this abstraction is that we can change the

persistence mechanism without affecting the logic domain. All

we need to change is the DAO layer which, if designed

properly, is a lot easier to do than changing the entire logic

domain. In fact we might be able to cleanly swap in a new data

access layer for our new database or alternate persistence

mechanism. Many frameworks that implements DAO pattern

have emerged, among them: SpringDao [29], JPA [34],

Hibernate [35], iBatis [36], NHibernate [37], EJB [32]. We

have used Hibernate in our work because it is the most used

solution within the java community.

V. Approach by modeling

Currently, the models’ transformations can be written

according to three approaches: The approach by Programming,

the approach by Template and the approach by Modeling.

The approach by Modeling is the one used in the present paper.

It consists of applying concepts from model engineering to

models’ transformations themselves.

The advantage of the approach by modeling is the

bidirectional execution of transformation rules. This aspect is

useful for the synchronization, the consistency and the models

reverse engineering [39].

A. MOF 2.0 QVT

Transformations models are at the heart of MDA, a standard

known as MOF 2.0 QVT being established to model these

changes. This standard defines the meta-model for the

development of transformation model.

The QVT standard has a hybrid character (declarative /

imperative) in the sense that it is composed of three different

transformation languages (see Figure 2).

The declarative part of QVT is defined by Relations and Core

languages, with different levels of abstraction. Relations are a

user-oriented language for defining transformations in a high

level of abstraction. It has a syntax text and graphics. Core

language forms the basic infrastructure for the declaration part;

this is a technical language of lower level determined by

textual syntax. It is used to specify the semantics of Relations

language in the form of a Relations2Core transformation. The

declarative vision comes through a combination of patterns,

source and target side to express the transformation.

The imperative QVT component is supported by Operational

Mappings language. The vision requires an explicit imperative

navigation as well as an explicit creation of target model

elements. The Operational Mappings language extends the

two declarative languages of QVT, adding imperative

constructs (sequence, selection, repetition) and constructs in

OCL edge effect.

The imperative style languages are better suited for complex

transformations including a significant algorithm component.

Compared to the declarative style, they have the advantage of

optional case management in a transformation. For this reason,

we chose to use an imperative style language in this paper.

Finally, QVT suggests a second extension mechanism for

specifying transformations invoking the functionality of

transformations implemented in an external language Black

Box.

Figure2. The QVT Structure

This work uses the QVT-Operational mappings language

implemented by Eclipse modeling [40].

B. OCL (Object Constraint Language)

Object Constraint Language (OCL) is a formal language used

to describe expressions on UML models.

These expressions typically specify invariant conditions that

must hold for the system being modeled or queries over

objects described in a model. Note that when the OCL

expressions are evaluated, they do not have side effects. OCL

expressions can be used to specify operations / actions that,

when executed, do alter the state of the system. UML modelers

can use OCL to specify application-specific constraints in their

models.

In MOF 2.0 QVT, OCL is extended to Imperative OCL as part

Esbai wt al. 40

of QVT Operational Mappings.

Imperative OCL added services to manipulate the system

states (for example, to create and edit objects, links and

variables) and some constructions of imperative programming

languages (for example, loops and conditional execution). It is

used in QVT Operational Mappings to specify the

transformations.

QVT defines two ways of expressing model transformations:

declarative and operational approaches.

The declarative approach is the Relations language where

transformations between models are specified as a set of

relationships that must hold for successful transformation.

The operational approach allows either defining

transformations using a complete imperative approach or

complementing the relational transformations with imperative

operations, by implementing relationships.

Imperative OCL adds imperative elements of OCL, which are

commonly found in programming languages like Java. Its

semantics are defined in [38] by a model of abstract syntax.

The most important aspect of the abstract syntax is that all

expression classes must inherit OclExpression.

OclExpression is the base class for all the conventional

expressions of OCL. Therefore, Imperative Expressions can

be used wherever there is OclExpressions.

VI. UML, N-tiers and GWT meta-models

To develop the algorithm of transformation between the

source and target model, we present in this section, the

different meta-classes forming the UML source meta-model

and the N-tiers target meta-model. The meta-model source

structure simplified UML model based on a package

containing the data types and classes. These classes contain

properties typed and characterized by multiplicities (upper and

lower). The classes contain operations with typed parameters.

Figure 3 shows the source meta-model:

Figure 3. Simplified UML meta-model

Figure 4 illustrates the first part of the target meta-model. This

meta-model represents a simplified version of the DAO

pattern. It presents the different meta-classes to express the

concept of DAO contained in the DaoPackage:

Figure 4. Simplified meta-model of DaoPackage

Figure 5 illustrates the second part of the target meta-model.

This meta-model is the business model of the application to be

processed. In our case, we opted for components such as DTO

and DI pattern. Here, we present the different meta-classes to

express the concept of DI contained in the Business Package.

Figure 5. Simplified meta-model of a BusinessPackage

Figure 6 shows the third part of the target meta-model. This

meta-model represents a simplified version of the MVP

pattern. It presents the different meta-classes to express the

concept of MVP implementation.

Like the Abstract Window Toolkit (AWT) and Swing, GWT is

based on widgets. To create a user interface, you instantiate

widgets, add them to panels, and then add your panels to the

application’s root panel, which is a top-level container that

contains all of the widgets in a particular view. GWT contains

many widgets whose classes are described by an inheritance

hierarchy. An illustration of some of those widgets is shown in

Figure 7.

How to Format Your Paper for JIAS 41

Figure 6. The proposed MVP meta-model

Figure 7. Simplified meta-model of a GWT widgets

VII. The process of transforming UML source

model to N-tiers GWT target model

CRUD operations (Create, Read, Update, and Delete) are most

commonly implemented in all systems. That is why we have

taken into account in our transformation rules these types of

transactions [46].

We first developed ECORE models corresponding to our

source and target meta-models, and then we implemented the

algorithm using the transformation language QVT Operational

Mappings [47].

To validate our transformation rules, we conducted several

tests. For example, we considered the class diagram (see

Figure 8). After applying the transformation on the UML

model, composed by the class Employee, we generated the

target model (see Figure 10).

Figure 8. UML instance model

A. The transformation rules

By source model, we mean model containing the various

classes of our business model. The elements of this model are

primarily classes.

Main algorithm:
input umlModel:UmlPackage

output crudModel:CrudProjectPackage

begin

create CrudProjectPackage crud

create DaoPackage daoPackage

for each e source model
 x = transformationRuleOnePojo(e)

 link x to dp

 x = transformationRuleOneIDao(e)

 link x to dp

 x = transformationRuleOneDaoImpl(e)

 link x dp

end for

create BusinessPackage bp

for each pojo target model
 x = transformationRuleTwoDto(pojo)

 link x to bp

end for

for each e source model
x = transformationRuleTwoIService(e)

 link x to bp

 x = transformationRuleTwoSrviceImpl(e)

 link x to bp

end for

create UIPackage uip

create MvpPackage mvpPackage

create ClientPackage clientPackage

create MainApp mainapp

link mainapp to clientPackage

create PresenterPackage presenterPackage

create IPresenter ipresenter

ipresenter.name = 'IPresenter'

ipresenter.methods = declaration of {do,bind}

link ipresenter to presenterPackage

for each e source model
 x = transformationRuleThreePresenter(e)

 link x to presenterPackage

end for

create ViewPackage viewPackage;

for each e source model
x=transformationRuleThreeView(e)

 link x to viewPackage

end for

create GwtXml gwtxml;

link presenterPackage to clientPackage

link viewPackage to clientPackage

link clientPackage to mvpPackage

link mvpPackage to uip

link gwtxml to uip

link dp to crud

link bp to crud

link uip to crud

create object GWTXML gwtxml;

return crud

end

Esbai wt al. 42

function

transformationRuleOnePojo(e:Class):Pojo

begin

create Pojo pj

pj.name = e.name

pj.attributes = e.properties

return pj

end

function

transformationRuleOneIDao(e:Class):IDao

begin

create IDao idao

idao.name = 'I'+e.name+ 'Dao'

idao.methods = declaration of e.methods

return idao

end

function

transformationRuleOneDaoImpl(e:Class):DaoImpl

begin

create DaoImpl daoImpl

daoImpl.name = e.name+ 'DaoImpl'

for each e1 DaoPackage
 if e1.name = 'I'+e.name+ 'Dao'

 put e1 in interfaces

 end if

end for

link interfaces to daoImpl

return daoImpl

end

function

transformationRuleTwoDto(p:pojo):Dto

begin

create Dto dto

dto.name = p.name

dto.attributes = p.attributes

return dto

end

function

transformationRuleTwoIService(e:Class):IService

begin

create IService iservice

iservice.name = 'I'+e.name+ 'Service'

iservice.methods= declaration of e.methods

return iservice

end

function

transformationRuleTwoServiceImpl(e:Class):Servi

ceImpl

begin

create ServiceImpl serviceImpl

serviceImpl.name = e.name+ 'ServiceImpl'

for each e1 BusinessPackage
 if e1.name = 'I'+e.name+ 'Service'

 put e1 in interfaces

 end if

end for

link interfaces to ServiceImpl

return ServiceImpl

end

function

transformationRuleThreePresenter(e:Class):Prese

nterImpl

begin

create PresenterImpl presenterImpl

presenterImpl.name= e.name+'PresenterImpl'

for each e1 PresenterPackage
 if e1.name = 'I'+e.name+ 'Presenter'

 put e1 in interfaces

 end if

end for

link interfaces to presenterImpl

return presenterImpl

end

function

transformationRuleThreeView(e:Class):ViewPackag

begin

create ViewPackage vp

for each e source model
 if e.methods.name ≠ 'remove'

 create View page

 link page to vp

 end if

end for

return vp

end

Figure 9 illustrates the first part of the transformation code of

UML source model to the N-tiers GWT target model.

Figure 9. First part of the transformation code

UML2Ntiers-GWT

The transformation uses as input a UML type model, named

umlModel, and as output a N-Tiers type model named

crudModel. The entry point of the transformation is the main

method. This method makes the correspondence between all

elements of type UmlPackage of the input model and the

elements of type crudProjectPackage output model.

The objective of the second part of this code is to transform a

UML package into N-Tiers gwt package, by creating the

elements of type package ‘Dao’, ‘Business’ and ‘UI. It is a

question of transforming each class of package UML, to

IPresenter and PresenterImpl in the Presenter package, to

Dispaly contains widgets in the View Package, to DTO,

IService and ServiceImpl in the Business package, and to Pojo,

IDao and DaoImpl in the Dao package, without forgetting to

give names to the different packages.

B. Result

Figure 10 shows the result after applying the transformation

rules.

How to Format Your Paper for JIAS 43

Figure 10. Generated PSM Ntiers-GWT model

The first element in the generated PSM model is UIPackage

which includes MvpPackage that contains gwt.xml file and

Client Package. The Client Package contains the main

application, the Presenter Package and the View Package that

contains the Three Views, namely CreateEmployeeView,

DisplayEmployeeView and UpdateEmployeeView. Since the

operation of the removal requires any view, we'll go to every

view element, which contains a multiple element widget like

Panel, firstNameTextBox, lastNameTextBox, actionButton

and cancelButton. Since the view Display contains the

DataGrid widget that contains removal button. The Presenter

Package includes one presenter’s interface, one presenter’s

implementation that contains methods with their parameters

and their implementations.

The second element in the generated PSM model is

businessPackage which includes one service’ interface, one

service’ implementation and one Dto’ object correspond to the

object ‘employee’.

The last element in the generated PSM model is DaoPackage

which contains one Pojo’ object that contains their attributes,

one Dao’ interface that contains methods with their parameters

and their implementations.

VIII. Conclusion and perspectives

In this paper, we applied the MDA to generate, from the UML

class diagram, the code following the MVP, DI and DAO

patterns for a RIA web application.

The purpose of our contribution is to finalize the works

presented in [2] [14]. This involves developing all

meta-classes needed to be able to generate an N-tiers

application respecting a MVP, DI and DAO patterns and then

we applied the approach by modeling and used the MOF 2.0

QVT standard as a transformation language. The

transformation rules defined allow browsing the source model

instance class diagram, and generating, through these rules, an

XML file containing layers of N-tiers architecture according to

our target model. This file can be used to produce the

necessary code of the target application. The algorithm of

transformation manages all CRUD operations. Moreover, it

can be re-used with any kind of methods represented in the

UML class diagram.

In the future, this work should be extended to allow the

generation of other components of Web application besides

the configuration files. Afterward we can consider integrating

other frameworks like Flex, JSF and JFace or other execution

platforms like PHP and DotNET.

References

[1] Pastor, O.,Molina J.C, Model-Driven Architecture in

Practice: A Software Production Environment Based on

Conceptual Modeling (New York: Springer-Verlag,

2007).

[2] Esbai, R., Erramdani, M., Mbarki, S., Model-Driven

Transformation for GWT with approach by

Modeling:From UML model to MVP web applications,

International Review on Computers and Software

(I.RE.CO.S.), Vol. 9. n. 9, pp. 1612-1620, September

2014.

[3] Andreas K., Alexander K., and Nora K.., Model-Driven

Generation of Web Applications in UWE, in

Proceedings of the 3rd International Workshop on

Model-Driven Web Engineering MDWE 2015, Como,

Italy, July 17, 2015

[4] M'hamed Rahmouni, Samir Mbarki, MDA-Based

Modeling and Transformation to Generate N-Tiers Web

Models. Journal of Software (JSW), Volume 10, Number

3, March 2015, pp: 222-238, (2015).

[5] Pawar et al., Model–Driven Content Management of Web

Applications Using Atlas Transformation Language,

International Journal of Advanced Research in

Esbai wt al. 44

Computer Science and Software Engineering 5(1),

Volume 5, Issue 1,January - 2015, pp. 403-410.

[6] Distante, D., Rossi, G., Canfora, G., Modeling Business

Processes in Web Applications: An Analysis Framework.

In Proceedings of the The 22nd Annual ACM

Symposium on Applied Computing (Page: 1677, Year of

publication: 2007).

[7] Gharavi, V., Mesbah, A., Deursen, A. V., Modelling and

Generating AJAX Applications: A Model-Driven

Approach, Proceeding of the7th International Workshop

on Web-Oriented Software Technologies, New York,

USA (Page: 38, Year of publication: 2008)

[8] Meliá S., Gómez J., Pérez P., Díaz O., A Model-Driven

Development for GWT-Based Rich Internet

Applications with OOH4RIA, Proceedings of ICWE '08.

Eighth International Conference on, Yorktown Heights,

NJ, (Page: 13, Year of publication: 2008).

[9] Meliá S., Gómez J., Pérez S., Diaz O. Facing

Architectural and Technological Variability of Rich

Internet Applications. IEEE Internet Computing, vol. 99,

pp.30-38, 2010.

[10] S. Ceri, P. Fraternali, and A. Bongio. Web modeling

language (WebML): a modeling language for designing

web sites. Computer Networks, vol. 33(1-6), pp

137–157, 2000.

[11] Preciado J. Carlos, M. Linaje, S. Comai, and F.

Sanchez-Figueroa. Designing Rich Internet Applications

with Web engineering methodologies. Proceedings of

the 9th IEEE International Symposium on Web Site

Evolution (WSE’07) (Page: 23 Year of publication:

2007).

[12] Trigueros M. L., J. C. Preciado, and F. S ánchez-Figueroa.

A method for model based design of Rich Internet

Application interactive user interfaces. In ICWE’07:

Proceedings of the 7th International Conference Web

Engineering (page: 226 Year of publication: 2007).

[13] Nasir, M.H.N.M., Hamid, S.H., Hassan, H., WebML

and .NET Architecture for Developing Students

Appointment Management System, Journal of applied

science, Vol. 9, n. 8, pp. 1432-1440, 2009

[14] Esbai. R, Erramdani, M., Mbarki, S., Arrassen. I, Meziane.

A. and Moussaoui. M., Model-Driven transformation

with approach by modeling: From UML to N-tiers Web

Model, International Journal of Computer Science

Issues (IJCSI) , Vol. 8, Issue 3, May 2011.

[15] Esbai. R, Erramdani, M., Mbarki, S., Arrassen. I, Meziane.

A. and Moussaoui. M., Transformation by Modeling

MOF 2.0 QVT: From UML to MVC2 Web model,

InfoComp - Journal of Computer Science, vol. 10, no. 3,

p. 01-11, September of 2011.

[16] Miller, J., Mukerji, J., al. MDA Guide Version 1.0.1

(OMG, 2003).

[17] UML Infrastructure Final Adopted Specification, version

2.0, September 2003.

[18] Meta Object Facility (MOF), version 2.0 (OMG, 2006)

[19] XML Metadata Interchange (XMI), version 2.1.1 (OMG,

2007),

[20] Mvp4g A framework to build a GWT application the right

way (https://code.google.com/p/mvp4g/) Accessed 09

September 2014

[21] GWT source web site

(https://code.google.com/p/google-web-toolkit/)

[22] Echo2 source web site (http://echopoint.sourceforge.net/)

Accessed 10 September 2014

[23] Harris, Robert; Warner, Rob, The Definitive Guide to

SWT and JFACE (1st ed.), (Apress, 2004).

[24] Vaadin Framework web site (https://vaadin.com/home).

Accessed 25 Avril 2014

[25] ZK framework web site (http://www.zkoss.org). Accessed

25 Avril 2014

[26] Nucleo .NET framework web site

(http://nucleo.codeplex.com/). Accessed 25 Avril 2014

[27] GWT project web site http://www.gwtproject.org/.

Accessed 25 Avril 2014

[28] Fowler, M., Inversion of Control Containers and the

Dependency Injection pattern

(http://martinfowler.com/articles/injection.html)

[29] Spring Source Web Site (http://www.springsource.org/).

Accessed 25 Avril 2014

[30] SpringNet Web Site(http://www.springframework.net/).

Accessed 25 Avril 2014

[31] Symfony open-Source PHP Web Framework Site

(http://www.symfony-project.org/. Accessed 25 Avril

2014

[32] Panda, D., Rahman, R., Lane, D., EJB3 in action

(Manning co., 2007).

[33] PicoContainer. http://www.picocontainer.org/. Accessed

25 Avril 2014

[34] Schincariol, M., Keith, M., Pro JPA 2: Mastering the Java

Persistence API (Apress, 2009)

[35] Hibernate Framework (http://www.hibernate.org/).

Accessed 25 Avril 2014

[36] Apache Software Foundation: The Apache iBatis

Framework (http://ibatis.apache.org/).

[37] NHibernate Framework home site (http://nhforge.org/).

Accessed 25 Avril 2014

[38] Meta Object Facility (MOF) 2.0

Query/View/Transformation (QVT), Version 1.1 (OMG,

2009).

[39] Czarnecki, K., Helsen, S., Classification of Model

Transformation Approaches, Proceedings of the 2nd

OOPSLA’03 Workshop on Generative Techniques in the

Context of MDA. Anaheim (Year of publication: 2003).

[40] Eclipse modeling, http://www.eclipse.org/modeling/.

Accessed 20 Avril 2015

[41] AndroMDA web site (http://www.andromda.org/).

Accessed 25 September 2014

[42] Günter Graw, Peter Herrmann, Generation and Enactment

of Controllers for Business Architectures Using MDA,

Software Architecture, LNCS Volume 3047, 2004, pp

148-166 (Springer Berlin Heidelberg, 2004)

[43] Xuejiao Pang, Kun Ma, Bo Yang, Design pattern

modeling and implementation based on MDA, Web

Information Systems and Mining, LNCS Volume 6988,

2011, pp 11-18 (Springer Berlin Heidelberg, 2011).

[44] Philip Langer, Manuel Wimmer, Gerti Kappel,

Model-to-Model Transformations By Demonstration,

Theory and Practice of Model Transformations, LNCS

Volume 6142, 2010, pp 153-167 (Springer Berlin

Heidelberg, 2010)

[45] Jouault, F. Kurtev, I.: Transforming models with ATL. In:

Bruel, J.-M. (ed.) MoDELS 2005, LNCS, vol. 3844, pp.

128-138. Springer, Heidelberg (2006)

How to Format Your Paper for JIAS 45

[46] De Lara, J., Guerra, E.: Pattern-based model-to-model

transformation. In: Ehrig, H., Heckel, R., Rozenberg, G.,

Taentzer, G. (eds.) ICGT 2008. LNCS, vol.5214, pp.

426-441. Springer, Heidelberg (2008)

[47] Varro, D.:Model Transformation by Example. In:

Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.)

MoDELS 2006: LNCS, vol. 4199, pp. 410-424. Springer,

Heidelberg (2009)

[48] Dennis Wagelaar,Viviane Jonckers, Explicit Platform

Models for MDA, Model Driven Engineering

Languages and Systems, LNCS Volume 3713, 2005, pp

367-381 (Springer Berlin Heidelberg, 2005).

[49] Kevin Lano,Shekoufeh Kolahdouz-Rahimi,

Model-Driven Development of Model Transformations,

Theory and Practice of Model Transformations, LNCS

Volume 6707, 2011, pp 47-61, (Springer Berlin

Heidelberg 2011).

Author Biographies

Redouane Esbai teaches the concept of Information

System at Mohammed 1 University,. He got his thesis of

national doctorate in 2012. He got a degree of an engineer

in Computer Sciences from the National School of

Applied Sciences at Oujda. He received his M.Sc. degree

in New Information and Communication Technologies

from the faculty of sciences and Techniques at Sidi

Mohamed Ben Abdellah University. His activities of

research in the MATSI Laboratory (Applied Mathematics,

Signal Processing and Computer Science) focusing on

MDA (Model Driven Architecture) integrating new

technologies XML, Spring, Struts, GWT, etc.

.

Mohammed Erramdani teaches the concept of

Information System at Med I University. He got his thesis

of national doctorate in 2001. His activities of research in

the MATSI Laboratory (Applied Mathematics, Signal

Processing and Computer Science) focusing on MDA

(Model Driven Architecture) integrating new technologies

XML, EJB, MVC, Web Services, etc.

