
Journal of Network and Innovative Computing

ISSN 2160-2174 Volume 3 (2016) pp. 192-199

© MIR Labs, www.mirlabs.net/jnic/index.html

Dynamic Publishers, Inc., USA

Improving UML Class Attribute Definitions Using

Particle Swarm Optimization

Renu George1, Philip Samuel2

1 College of Engineering, Chengannur, Kerala, India

renugeorge@ceconline.edu

2 Information Technology, SOE, Cochin University of Science and Technology,

Kochi, Kerala, India

philips@cusat.ac.in

Abstract: Unified Modeling Language has become the de-facto

industry standard for object-oriented modeling of the static and

dynamic aspects of software systems. Class diagrams represent

the static aspects of the system, the classes required for imple-

mentation of the system, the relationships between classes and

the attributes and methods of each class. Attributes describe the

data contained in an object of a class and its properties such as

name, data type, visibility etc. Methods define the ways in which

objects interact. Activity diagram represents the dynamic be-

havior of the system. The implementation of methods in a class is

depicted using activity diagram. To ensure software quality, it is

essential to maintain consistency between diagrams of the same

model. Class diagrams can be mapped directly to an object

oriented programming language and inconsistency in attribute

definitions may be reflected directly in the generated code.

Complex systems require large number of diagrams and hence

detection of inconsistencies in class attribute definitions has a

significant role during the design phase of software development.

In this paper we describe a method for improving the class

attribute definitions using particle swarm optimization tech-

nique. Particle Swarm Optimization (PSO) is a soft computing

technique that provides solutions to optimization problems by

maximizing certain objectives in a complex search space. The

PSO algorithm is applied to detect inconsistency in attribute

definitions and to optimize the fitness value of the attributes. The

application of PSO algorithm improves the attribute definitions

and provides consistent, optimized diagrams that result in the

generation of more accurate code.

Keywords: class diagram, activity diagram, class attribute, con-

sistency, particle swarm optimization

I. Introduction

Unified modeling language (UML) has become the de-facto

standard for requirements modeling and is the most popularly

used modeling language. UML provides a set of diagrams to

model the requirements. A single diagram is not capable of

representing all the aspects of the system and different models

are built to capture the static and dynamic aspects of the

system [39]. The elements of the system and their relation-

ships are described using static model. Class diagrams rep-

resent the static aspects of the system, the classes required for

implementation of the system, the relationships between

classes and the attributes and methods of each class. The

behavior of the system over time is represented using dynamic

models. UML also provides different diagrams such as ac-

tivity diagram, sequence diagram, state chart diagram and

collaboration diagram to model the dynamic aspects of the

system.

Large complex systems involve different models. The

model may be composed of several diagrams and consistency

should be maintained among the diagrams of the same model.

The whole set of diagrams should not contradict one another

since they are descriptions of the aspects of a single system

[39]. The refinement of the models may also introduce in-

consistencies. Inconsistency can be referred to conflicting

requirements, violation of constraints and any design model

possessing these properties is termed inconsistent. There are

two types of consistency issues: intra-model consistency and

inter-model consistency issues [23]. Consistency expected

between different model elements of the same version de-

picting the static and dynamic aspects is termed intra-model

consistency or horizontal consistency and between different

versions of the same model is termed inter-model consistency

or vertical consistency. Identification of inconsistencies

during the design phase results in the development of accurate

code. Manually detecting the inconsistencies is tedious, time

consuming and prone to errors.

A recent and emerging paradigm in bio-inspired computing

for implementing adaptive systems is Swarm Intelligence (SI).

The behavior of real world insect swarms is considered as the

basis of Swarm Intelligence and the behavior is used as a

problem solving tool in SI. A population of interactive ele-

ments that performs a collaborative search of space to opti-

mize some global objective is called swarm [18]. The original

intent of particle swarm concept was to simulate the chore-

ography of a bird flock or fish school and it originated as a

simulation of simplified social system. However, it was found

that particle swarm model can be used as an optimizer [5].

Particle swarm optimization (PSO) proposed by Kennedy

and Eberhart in 1995 is inspired by the social behavior of bird

flocking or fish schooling searching for food. PSO is a

computational intelligence oriented, stochastic, popula-

tion-based global optimization technique [2]. In terms of

memory requirement and speed, it is computationally inex-

pensive and requires only primitive operators. PSO has a

 193
Improving UML Class Attribute Definitions Using Particle Swarm Optimization

simple concept with a unique searching mechanism, compu-

tational efficiency, and easy implementation and has been

extensively applied to many engineering optimization areas.

The process of finding the maximum or minimum value of

a function or process satisfying a set of constraints is termed

optimization. The goal of optimization is to maximize effi-

ciency. Consistency checking can be treated as a form of

optimization that checks each component of the UML class

and activity diagram, verifies whether the attributes involved

in the implementation of the activity is consistent and opti-

mizes the fitness value of attributes [3]. The attributes in a

class diagram has a set of properties that fully describe the

attribute such as the class in which it is defined, name, type,

visibility etc. The fitness value is defined as a function of the

properties of the attributes. We have defined two types of

inconsistency related to attribute specification: attribute

missing inconsistency and attribute specification incon-

sistency. In this paper, we focus on improving the UML class

attribute definition by using PSO algorithm. Intra-model

consistency problems in attribute definitions between class

diagram and activity diagrams are identified by applying the

principle of PSO. The PSO algorithm analyzes the con-

sistency value of attributes to detect and fix attribute missing

and attribute specification inconsistency. Manually detecting

and fixing inconsistencies in complex systems involving large

number of models is time consuming and error prone. Iden-

tifying and fixing the inconsistencies in the design phase of

software development results in the generation of accurate

software.

II. Related Work

Detecting inconsistency in attribute definition in UML dia-

grams is very crucial to the development of accurate software.

The paper rule based detection of inconsistency in UML

models [4] defines a production system language and rules

specific to software designs modeled using UML class dia-

gram and sequence diagram. Inconsistencies can be detected,

users can be notified, solutions can be recommended and

inconsistencies can be automatically fixed using this ap-

proach.

Inconsistency between different versions of a UML model

expressed as a collection of class, sequence and state dia-

grams is detected and resolved in [6] using description logic.

UML model is specified as a collection of concepts and roles

using a knowledge representation tool, Loom. Detection and

resolution of inconsistencies are performed using logic rules.

A metamodel independent method for checking model

consistency is proposed in [8]. Here models are represented

by sequence of elementary construction operations and con-

sistency rules are then expressed as logical constraints on such

sequences. The approach mainly deals with class diagram and

use case diagrams.

A method on specifying consistency rules on different as-

pect models expressed in UML is specified in [9]. Con-

sistency checking and consistency rules are also proposed.

The paper instant consistency checking for UML [10] pre-

sents an approach for dealing with model changes and quickly,

correctly, and automatically deciding what consistency rules

to evaluate. A method of checking inconsistencies in UML

models using description logic is specified in [11].

The application of swarm optimization technique in soft-

ware development environment is specified in [12]. An algo-

rithm to provide decision making support for class responsi-

bility assignment in a class diagram by reassigning methods

and attributes to classes using Particle Swarm Optimization is

presented in the paper. The building blocks of swarm intel-

ligence and how they are used to solve the routing problem is

discussed in [13]. A general framework called Ant Colony

Routing in which most swarm intelligence routing algorithms

can be placed is presented in the paper.

A possible solution for the optimal operation of distribution

networks which takes into account the impact of Distributed

Generations is discussed in [14]. The distribution problem

planning is done using PSO. Detection of concurrency prob-

lems such as deadlock and starvation using Particle Swarm

Optimization algorithm is proposed in [15]. Thread execution

interleaving that has a high probability of revealing deadlock

and starvation faults are optimized by PSO which results in

reduced complexity and increased accuracy.

A framework to test the consistency of data coming from

different types of data sources is described in [16]. Con-

sistency requirements are modeled using Object Constraint

Language (OCL) and other modeling elements and model

instances should be represented in XMI format for con-

sistency check. An analysis of the PSO algorithm is performed

in [20]. PSO is a simple algorithm with fewer parameters.

Consistency issues in behavioral models are dealt with in

[17] and a methodology for dealing with consistency prob-

lems is presented. Consistency tests are formulated by map-

ping the relevant aspects of the model to a semantic domain

and the methodology is applied to concurrent models in

UML-RT.

An adaptive PSO algorithm to perform automatic tracking

of the changes in a dynamic system by adding two new

changes to PSO: environment detection and response is de-

scribed in [21]. Functional test case selection based on mul-

ti-objective PSO is discussed in [22]. Selection of functional

test cases considering coverage criteria and requirements

effort using multi-objective PSO is investigated in the paper.

 The consistency problems arising between class diagram

(static diagram) and state diagram (dynamic diagram) is

studied in paper [28]. Consistency semantics for class and

state machines consisting of an Object-Z class describing the

data aspects of a class and an associated state machine is

studied. Consistency definition to the whole specification is

provided by means of a translation to a common semantic

domain. A technique for automatically checking each defini-

tion with a model checker is provided.

A framework based on OCL to check the consistency of

UML models is described in [29]. The consistent models can

be transferred from the checker tool to any other UML tool

using the XMI standard. The paper highlights some short-

comings in the UML definition and also proves the support

provided by OCL in managing tool peculiarities.

A methodology that tackles impact analysis and change

management of analysis/design documents in the context of

UML-based development is presented with the support of a

prototype tool (iACMTool) [30]. OCL constraints on an

adaptation of the UML meta-model are used to formally

Renu George, Philip Samuel 194

define impact analysis rules, consistency rules between UML

diagrams, automated change identification and classification

between two versions of a UML model.

 An approach using Boolean satisfiability to solve

UML/OCL verification problems is discussed in [31]. The

encoding and solution of the respective problem components

of a verification problem, namely system states of a UML

model, OCL constraints, and the actual verification task using

an off the-shelf SAT solver is discussed.

A formal (mathematical) definition of the UML class dia-

gram and its semantics is provided in [32]. A precise defini-

tion of the particular elements of the diagram and an inter-

pretation of the whole diagram is also provided. The paper

provides a reasoning of the class diagram and the inconsist-

encies that can occur in the diagram.

The various model consistency conceptions, proposals,

problems and solutions are identified through a systematic

literature review (SLR) in [33]. The review resulted in the

identification of open issues, trends and future research within

this scope of UML model consistency management. A pre-

liminary formal approach to solve consistency problems

based on transformation languages and rewriting logic is also

provided.

A formal tool support to address the problem of incon-

sistency management in evolving UML models is discussed in

[34]. A classification of semantic inconsistencies in and

between evolving class diagrams, sequence diagrams, and

state diagrams is provided followed by a UML profile to

support versioning and evolution. Logic rules based on de-

scription logic was used to provide tool support. The UML

models in XMI format was translated into the logic database

of the description logics tool using an XML translator.

The issue of consistency of behavioural models in UML

and techniques for specifying and analyzing consistency is

discussed in paper [35]. The elements of UML model are

transformed into a semantic domain using meta-model rules

and consistency constraints specified and validated using the

language and tools of the semantic domain.

Automated support in fixing inconsistencies in UML

models is provided in [36]. Inconsistencies are fixed by au-

tomatically generating a set of concrete changes for an in-

consistency and information about the impact of each change

is provided on all consistency rules. A rigorous analysis

technique for UML is provided in [37]. The analysis is based

on the use of diagrammatical transformations. A formal se-

mantics for a small subset of the language of UML class

diagrams is developed. Deductive transformation rules are

developed based on these semantics.

A study on the tractable consistency checking of UML

diagrams is proposed in [41]. Inconsistencies in the diagrams

are identified by translating them into first-order predicate

logic that is generalized by counting quantifiers. A restricted

set of class diagrams are considered which is produced by

deleting certain components. The approach generated opti-

mized algorithms for testing consistencies of restricted class

diagrams

Class diagrams are an important part of any UML model

because all later design and implementation work is based on

this foundation. Good quality class diagrams result in the

development of high quality software. A survey of the existing

class diagram metrics is provided in [38]. Measuring the

quality of class diagrams helps object oriented software de-

signers to identify weak design spots when the cost of im-

provement is less, to choose between design alternatives,

predict external quality attributes such as maintainability and

reusability and improve resource allocation based on these

predictions.

The application of PSO in dynamic environment is pro-

posed in [42]. The paper presents two PSO techniques for an

efficient and robust optimization over the dynamic systems,

namely Fractional Global Best Formation (FGBF) with mul-

ti-swarms and Multi-Dimensional (MD) PSO. The particle

structure and the swarm guidance are upgraded using the

proposed techniques with substantial improvements in terms

of speed and accuracy. Software design involves a set of

models and each model in the multimodel is termed a partial

model. A framework that specifies overlap between models

as a network of inter-related metamodels or metamodel

schema and defines consistency is specified in [43].

A mixed scheduling algorithm which is a combination of

PSO and simulated annealing is proposed in [44]. The im-

proved particle swarm optimization algorithm applied to a

cloud environment reduces the operation time of tasks, pro-

vides efficient and proper scheduling of resources to a task

and increases resource utilization ratio.

III. Particle Swarm Optimization

PSO is a machine learning technique based on the collective

movement of a number of particles or birds in search of global

optimum. The potential solutions are called particles and each

particle has a position, velocity and fitness value. The fitness

function computes the fitness value of the particles. The

particles move by following the current optimum particle in

the search space and the movement is directed by velocity.

Each particle communicates with its neighbors about its

performance, records its best performance so far and knows

the position of the highest performing neighbor. The position

of each particle is updated based on the displacement at the

previous time step in the same direction it was following; the

displacement in the direction towards the position where the

highest performance of the particle so far was recorded; and

displacement in the direction towards the position of the

highest performing neighbor at that moment [1]. At every

iteration, the position of the particle relative to the goal is

evaluated and the best position of the particles in the neigh-

borhood is shared with this particle and this information is

used by the particle to update its position and velocity [19].

The search space is initialized with a group of random

particles (solutions) and search for optima is performed by

updating generations. The particles are updated by following

two best values in every iteration: pbest and gbest. The best

solution or fitness achieved by the particle so far is called

pbest or personal best and gbest or global best represents the

best value obtained so far by any particle in the population [5].

The particle updates its velocity and positions after finding the

two best values, with the equations (1) and (2).

])[(*)1,0(*2

])[(*)1,0(*1][*]1[

tpresentgbestrandc

tpresentpbestrandctvwtv




 (1)

]1[][]1[ tvtpresenttpresent (2)

 195
Improving UML Class Attribute Definitions Using Particle Swarm Optimization

where

v[t] is the velocity of the particle at time t,

w is the inertia weight

present[t] is the current particle (solution) at time t,

pbest is the best value attained by the particle so far,

gbest is the best value attained so far by any particle in

 the population,

rand() is a random number between 0 and 1,

c1, c2 are learning factors.

The pseudo code for PSO algorithm [5] is as follows:

 Initialize particles and parameters of PSO

Do

 For each particle

 Calculate fitness value

 If the fitness value is better than the best fit-

 ness value

 set current value as the new pbest

 End

 Choose the particle with the best fitness value of

 all the particles as the gbest

 For each particle

 Calculate particle velocity according equation (1)

 Update particle position according equation (2)

 End

While maximum iterations or minimum error criteria is not

attained

The PSO algorithm consists of an initialization part that

initializes the particles in the search space, computation of

fitness value and updating the velocity and position of the

particles. The steps are iterated until minimum error criteria or

the maximum number of iterations is reached.

A. Parameters of PSO

The key steps in applying the PSO are the representation of

the solution and the fitness function. One of the advantages of

PSO is that real numbers can be taken as particles and a

standard procedure can be applied to find optima. The

searching process is applied repetitively until optima is

reached or the maximum number of iterations is encountered.

The PSO algorithm has a set of parameters that are to be

initialized [5].

1) Number of particles

The typical range is 20 to 40. For most of the problems good

results can be obtained with 10 particles.

2) Dimension of the particles

The dimension of the particles depends on the problem to be

optimized.

3) Range of particles

Range of particles depends on the problem to be optimized

and different ranges can be specified for different dimensions

of particles.

4) Vmax

Determines the maximum change of a particle during one

iteration. It improves the resolution of search by limiting the

velocity of particles. The value is set by the programmer.

5) Learning factors

 The learning factors c1 and c2 are called the cognitive and

social scaling parameters. The cognitive component, c1 acts

as the particle’s memory and causes the particles to return to

the regions of the search space in which it has experienced

high individual fitness. The social component c2, represents

the size of the step the particle takes toward gbest and causes

the particle to move to the best region the swarm has found so

far. Usually c1 equals to c2 and ranges from [0, 4].

6) Stopping criteria

 The stopping criteria represent the minimum error condition

or the maximum number of iterations the PSO algorithm

executes. The stopping condition also depends on the problem

to be optimized.

7) Inertia weight

The concept of inertia weight is introduced by Shi and

Eberhart. The contribution rate of a particle’s previous ve-

locity to its velocity at the current time step is determined by

the inertia weight. Global search is facilitated by large inertia

weight and local search by small inertia weight [24]. The

movement of the particle in the same direction it was heading

is determined by the inertia component [25]. The value of the

inertia coefficient w is typically between 0.8 and 1.2 [26].

IV. Consistency Checking of Class Attributes

Consistency checking consists of analyzing the models to

identify unwanted configurations and the model is incon-

sistent if such configurations are found [40]. The system is

designed using UML class and activity diagrams and the

entire model is analyzed to detect model inconsistency. Class

diagrams provide information about the attributes and

methods in a class. The values that can be attached to in-

stances of class or interface are defined using attributes. An

attribute is defined in terms of its properties such as name,

data type, visibility, multiplicity etc. The visibility of a

method, its return type and the parameters of the method can

also be specified in the class. Object oriented programming

languages are based on the concept of classes and hence class

diagrams can be directly mapped with object oriented lan-

guages. Due to this property class diagrams are widely used at

the time of construction. The static view of the system can be

visualized using class diagrams and they can also be used to

construct the executable code for forward and reverse engi-

neering of any system.

Activity diagrams depict the dynamic behavior. The im-

plementation of methods in a class diagram is specified using

an activity diagram. Activity diagrams represent how activi-

ties are co-ordinated to implement an operation. The essential

dependencies between different activities and the order in

which they are to be performed is depicted using activity

diagram [39]. An activity diagram is a collection of nodes and

edges. Edges depict control flow. Nodes represent steps in the

implementation of an operation.

The attributes can be used to construct executable code and

hence consistency checking of attribute definitions has a

significant impact on the accuracy of the code generated. The

nodes of the activity diagram represent the actions performed

to implement a method. Our method of consistency checking

performs an analysis of the activity diagram nodes, identifies

the attributes involved and verifies whether the attributes are

defined in the class and is consistent with respect to its spec-

ification of properties. The aim of our work is to detect in-

consistencies in attribute definitions and optimize the attribute

specification.

The attributes are assigned a fitness value. The fitness value

determines the consistency of the attributes. Inconsistencies

Renu George, Philip Samuel 196

are detected by analyzing the fitness value of attributes. We

have identified two types of inconsistencies: a) Attribute

missing inconsistency and b) Attribute specification incon-

sistency.

A. Attribute Missing Inconsistency

An activity diagram represents an operation or function per-

formed by the system and provides a graphical representation

of the steps in the implementation of the function. The nodes

specify the actions to be performed in implementing the

function. Implementation of an action involves attributes

defined in the class. We identify the attributes involved in

implementing the action and check whether the attributes are

defined in the class. An undefined attribute leads to attribute

missing inconsistency. If an attribute is undefined, the vital

information related to the attribute such as type, visibility etc.

shall be missing and this leads to inconsistency.

B. Attribute Specification Inconsistency

An attribute is defined in terms of a set of properties such as

name, type, visibility, id, class name, multiplicity, changea-

bility, ordering and initial value. Attribute specification in-

consistency occurs when there are incompletely specified

attributes, i.e. the attribute is mentioned in the class, but the

properties of the attribute are not completely specified. We

have defined a consistency index called Attribute Specifica-

tion Index, ASI to compute the consistency of the particles.

ASI is defined as the ratio of the fitness value of the particle to

the fitness value of the gbest particle.

)(/)(clegbestPartifParticlefASI  (3)

The class diagram is the only diagram that can be directly

mapped to an object oriented programming language and

hence incomplete specification of the attributes may lead to

the development of erroneous software.

V. Consistency Checking of Attribute Definition

using PSO

The principle of particle swarm optimization is applied to

detect and fix inconsistencies in attribute definitions. The aim

of our work is to optimize the fitness value of attributes to

achieve consistency. ASI value is computed for each particle

and it is also used as the stopping criteria of the PSO algo-

rithm. Detection and correction of inconsistencies during the

design stage of software development life cycle results in the

generation of accurate code. Our method performs con-

sistency check of the attribute definitions between class and

activity diagrams by applying the principle of PSO and gen-

erates optimized diagrams by maximizing the fitness value of

particles (attributes). Maximizing the fitness value improves

the attribute specification.

A. Algorithm

The algorithm for implementing the PSO method for con-

sistency checking of attribute definitions is outlined below

[3].

Model the requirements using UML class diagram and activ-

ity diagrams.

 Parse the diagram and obtain diagram specification.

Identify the attributes in the implementation of action in the

nodes of the activity diagram.

Check attribute missing inconsistency.

 Create new particles for each missing attribute.

 Initialize the search space with particles.

Initialize c1, c2, maximum number of iterations, maximum

velocity, initial velocity, inertia weight.

Repeat

 Apply fitness function to each particle.

 Record pbest and gbest.

 Compute velocity of the particle

])[(*)1,0(*2

])[(*)1,0(*1][*]1[

tpresentgbestrandc

tpresentpbestrandctvwtv





 Update position

]1[][]1[ tvtpresenttpresent

 Compute ASI
)(/)(clegbestPartifParticlefASI 

Until ASI=1 or maximum number of iterations is attained

The system modeled using class and activity diagrams are

parsed to identify attributes and nodes in the diagram. Parti-

cles are created corresponding to each attribute defined in the

class diagram. The nodes in the activity diagram and the

attributes involved in the computation are identified. For each

attribute identified in the activity diagram, we check for

attribute missing inconsistency. If the attribute is missing, new

particle with the attribute name is added to the search space.

The attribute specification consistency of all the attributes is

checked and ASI index is computed. The PSO algorithm is

applied iteratively until the ASI value of all the particles are

one or the maximum number of iterations is achieved.

The main components of PSO are a swarm of particles with

each particle representing a candidate solution. Elements of

the particle represent the parameters to be optimized [27]. The

PSO algorithm initializes the search space with particles,

evaluates the fitness of particles, computes velocity and up-

dates position of the particles.

B. Particle Initialization

To apply the PSO algorithm, an initial population of particles

called swarm is to be considered. The type of particles de-

pends on the problem we are trying to optimize [5] [7]. To

perform consistency checking of the attribute definitions,

attributes specified in the class diagram and activity diagram

are defined as particles. A particle is represented as a nine

tuple consisting of id, name, type, visibility, class name,

multiplicity, changeability, ordering and initial value. Name

refers to the name of the attribute, type represents the data

type, visibility refers to the access specifier, and class name

represents the name of the class in which the attribute is

defined. Attribute missing inconsistency check is performed

during particle initialization to identify missing attributes.

New particles with the name of the attribute are created for

each missing attribute [3].

C. Fitness Function

The fitness value, computed by applying a fitness function to

each particle, is a measure of consistency of the particle. A

particle is defined using a set of parameters or properties. The

fitness value is computed as a function of the parameters in the

representation of a particle. Each parameter is assigned a

weight according to its significance and the fitness function

computes the weighted sum of the parameters. The goal of our

algorithm is to maximize the fitness function. A high value of

fitness function implies that the particle is consistent [3].

 197
Improving UML Class Attribute Definitions Using Particle Swarm Optimization

The fitness function is applied to all particles and the fitness

value is computed in all iterations. For all particles, we

compute ASI, the attribute specification index. ASI provides

a measure of how consistent the attribute specification is. A

specification index value less than one indicate inconsistency.

D. Position / Velocity Adjustment

If the ASI index of an attribute returns a value less than one,

the particle is inconsistent. If the properties of the particles are

not defined completely, the particle is inconsistent. The ve-

locity and position of inconsistent particles are updated based

on the values of present, pbest and gbest. Consistency is

achieved by moving the parameters of the particles in the

search space to their respective positions according to PSO

equations (1) and (2). To apply the PSO algorithm for solving

model consistency problem, we define velocity as the number

of parameters to be added to a particle in each iteration and

position as the total number of defined parameters of the

particle. The process is repeated until an optimum solution

that satisfies the consistency criteria is achieved or maximum

number of iterations is reached.

E. Case Study

A project Library has been implemented to perform con-

sistency check. The class diagram for the project Library is

illustrated in figure 1. The inconsistency between the dia-

grams is demonstrated with help of a class diagram and an

activity diagram. The project consists of a class diagram with

six classes Book, Member, Librarian, Issue, Student and

Faculty and an activity diagram for the method issueBook() in

the class Librarian. Each class has its own attributes and

methods.

Figure 1. Class diagram Library

The attributes of the class Book are bookid, title, author,

price and status. The data types of bookid, title, author and

status is String and the data type of price is float. The visi-

bility of the attribute status is public whereas the visibility of

all other members is private. The class has one method dis-

playBookdetails() with one argument bookid.

The class Librarian has only one attribute name of type

String. The methods are searchBook() to search for a book,

issueBook() to issue the book to a particular member, re-

turnBook() to handle the books returned by the member and

addmember() to add a new member to the library. The class

Issue stores the issue details of books and has three attributes

bookid, issuedate and transid. The data type of the attribute

bookid is String, transid is integer and issuedate belongs to

the data type date.

The class Member defines the attributes of members of the

library. The attributes are name to store the name of the

member, a unique memberid to store the id of the member,

phonenumber to store phone number, booklimit to indicate

the maximum number of books that can be issued to a member

and bookissued to indicate the maximum number of books

that has been issued to the member.

The classes Book and Librarian are connected by an asso-

ciation with name issued by and the association name between

Librarian and Issue is creates since the issue process is cre-

ated by the Librarian. The Librarian manages Member and a

member can request for a Book. Members can be of two types:

Faculty or Students. A generalization relationship exists

between the two classes and the Member class.

Figure 2. Activity diagram for issueBook()

The activity diagram for the method issueBook() method

in the class Librarian is depicted in figure 2. The activity

diagram provides a diagrammatic representation of the se-

quence of actions involved in the issuing a book to a member.

The issueBook() method is initiated by the Librarian. The

activity diagram checks the status of the book. Status is an

attribute defined in the class Book. The attribute specifies

whether the book is available or issued. If the book is not

available, the issue process ends. If the book is available, the

book limit of the member is checked in the class Member.

Since the attribute is accessed by a nonmember function, the

visibility of the attribute is specified as public. If the book

Renu George, Philip Samuel 198

limit has been reached, the book is not issued. If not, the book

is issued to the member and the transid, memberid, bookid and

issuedate are updated in the Issue class. The bookissued

attribute is updated in the Member class and the status of the

book is updated in the class Book and the issueBook() method

terminates.

The node ‘update memberid, bookid, issuedate, transid’ in

the class Issue refers to four attributes memberid, bookid,

transid and issuedate whereas only three attributes bookid,

transid and issuedate are defined in the class Issue. This leads

to attribute missing inconsistency. Attribute missing incon-

sistency check detects the missing attribute and a new particle

with name memberid is created in the class Issue. The algo-

rithm performs attribute missing inconsistency check on all

the nodes in the activity diagram. New attributes or particles

are created for all missing attributes. During iteration of the

PSO algorithm, ASI value of the memberid particle has a

value less than one since the parameters are not defined.

Attribute specification inconsistency check is performed on

all particles in all iterations. The properties of the attributes

are updated in all iterations depending on the velocity value,

resulting in a change in the position. The PSO algorithm is

iterated repetitively until all the particles are made consistent

or the termination condition is reached.

VI. Conclusion

We have developed a method to improve the UML class

attribute definitions by applying the principle of PSO. UML

diagrams model the different aspects of the system and in-

tra-model consistency should be achieved among the dia-

grams of the same model. In our method the static aspects are

modeled using class diagrams and dynamic aspects using

activity diagrams. We employ the particle swarm optimization

algorithm to perform the consistency check on class and

activity diagrams of the same model. The attributes are treated

as particles and the particle is represented as a tuple consisting

of different parameters. The fitness function analyzes the

attribute definitions to compute the fitness value of the parti-

cle. The attribute specification index, ASI evaluates each

particle with gbest particle. The ASI value is also used as the

stopping criteria. The position and velocity of the inconsistent

particles are updated. Object oriented programming lan-

guages are centered on the concept of classes and class dia-

grams can be mapped directly to an object oriented pro-

gramming language and hence detection of attribute missing

inconsistency or attribute specification inconsistency plays a

significant role in the development of accurate software.

Large complex systems require many diagrams to model the

system and inconsistencies if undetected results in the de-

velopment of software with errors. Correction of errors in the

software may turn out to be costly and time consuming.

Manual detection of inconsistencies is also time consuming

and error prone. The advantages of our method are that it uses

the simple concept of PSO to detect and fix inconsistencies in

attribute definitions and the method can be applied in the

design stage of software development thereby saving cost,

time and effort and results in the production of more accurate

code.

References

[1] Floreano. Dario, Claudio. Mattiussi. Bio-inspired artificial

intelligence: theories, methods, and technologies, MIT press,

2008.

[2] Kennedy. J, Eberhart. R, “ Particle Swarm Optimization”. In

Proceedings of IEEE International Conference on Neural

Networks. IV, pp. 1942–1948, 1995.

[3] George. Renu, Philip. Samuel. “Particle Swarm Optimization

Method Based Consistency Checking in UML Class and Ac-

tivity Diagrams”, In Innovations in Bio-Inspired Computing

and Applications, Springer International Publishing, pp.

117-127, 2016.

[4] Liu. Wen. Qian, Steve Easterbrook, John Mylopoulos.

“Rule-based detection of inconsistency in uml models”. In

Workshop on Consistency Problems in UML-Based Software

Development, Vol. 5, 2002.

[5] Particle Swarm Optimization,

http://www.swarmintelligence.org

[6] Van. Der. Straeten. Ragnhild, Tom. Mens, Jocelyn. Sim-

monds, Viviane. Jonckers. “Using description logic to main-

tain consistency between UML models”. In: «UML»

2003-The Unified Modeling Language. Modeling Languages

and Applications, Springer Berlin Heidelberg, pp. 326-340,

2003.

[7] O'Keeffe. Mark, Mel. O. Cinnéide. “Towards automated

design improvement through combinatorial optimization”. In

Workshop on Directions in Software Engineering Environ-

ments, Edinburgh, Scotland, UK. 2004.

[8] Blanc. Xavier, Isabelle. Mounier, Alix. Mougenot, Tom.

Mens. “Detecting model inconsistency through opera-

tion-based model construction”. In: ACM/IEEE 30th Inter-

national Conference on Software Engineering (ICSE'08), pp.

511-520. IEEE 2008.

[9] Dubauskaite. R, O. Vasilecas. “Method on Specifying Con-

sistency Rules among Different Aspect Models, expressed in

UML”. Elektronika ir Elektrotechnika,19(3), pp.77-81, 2013.

[10] Egyed. Alexander. “Instant consistency checking for the

UML”. In Proceedings of the 28th international conference

on Software engineering, pp. 381-390, ACM 2006.

[11] Van Der Straeten., Ragnhild., Jocelyn Simmonds., Tom

Mens.: “Detecting Inconsistencies between UML Models

Using Description Logic”. Description Logics, 81, 2003.

[12] Saini. Dinesh Kumar, Yashvardhan. Sharma. “Soft computing

particle swarm optimization based approach for class respon-

sibility assignment problem”. Soft Computing, 40(12), 2012.

[13] Ducatelle. Frederick, Gianni. A. Di. Caro, Luca. M. Gam-

bardella. “Principles and applications of swarm intelligence

for adaptive routing in telecommunications networks”, Swarm

Intelligence, 4(3), pp. 173-198, 2010.

[14] Shamshiri. Meysam, Chin. Kim. Gan, Yusoff. Mariana,

Mohd. Ruddin, AbGhani. “Using Particle Swarm Optimiza-

tion Algorithm in the Distribution System Planning”, Aus-

tralian Journal of Basic and Applied Sciences 7(3), pp. 85-92,

2013.

[15] C. Revathi, M. Mythily. “A Uml/Marte Detection of Starva-

tion and Deadlocks at the Design Level in Concurrent Sys-

tem”, Int. J. Computer Technology & Applications, 4(2), pp.

279-285, 2013.

[16] Nytun. Jan. Pettersen, Christian. S. Jensen. “Modeling and

testing legacy data consistency requirements”. In: «UML»

2003-The Unified Modeling Language. Modeling Languages

and Applications, Springer Berlin, Heidelberg, pp. 341-355,

2003.

[17] Engels. Gregor, Jochem. M. Küster, Reiko. Heckel, Luuk.

Groenewegen. “A methodology for specifying and analyzing

consistency of object-oriented behavioral models”. In ACM

 199
Improving UML Class Attribute Definitions Using Particle Swarm Optimization

SIGSOFT Software Engineering Notes, 26(5), pp. 186-195.

ACM 2001.

[18] Kennedy. J, Kennedy. J. F, Eberhart. R. C, Shi. Y. Swarm

intelligence, Morgan Kaufmann, 2001.

[19] Peram. Thanmaya, Kalyan. Veeramachaneni, Chilukuri. K.

Mohan. “Fitness-distance-ratio based particle swarm optimi-

zation”. In Proceedings of the Swarm Intelligence Symposium

(SIS'03), pp. 174-181, IEEE 2003

[20] Bai. Qinghai. “Analysis of particle swarm optimization algo-

rithm”, Computer and information science, 3(1), pp. 180,

2010.

[21] Hu. Xiaohui, Russell. C. Eberhart. “Adaptive particle swarm

optimization: detection and response to dynamic systems”. In

wcci, pp. 1666-1670, IEEE 2002.

[22] De. Souza. Luciano. S, Pericles. B.C. de. Miranda, Ricardo. B.

C. Prudencio, Flavia. De. A. Barros. “A multi-objective par-

ticle swarm optimization for test case selection based on

functional requirements coverage and execution effort”. In

23rd IEEE International Conference on Tools with Artificial

Intelligence (ICTAI), pp. 245-252. IEEE 2011.

[23] Huzar. Zbigniew, Ludwik. Kuzniarz, Gianna. Reggio, Jean.

Louis. Sourrouille. “Consistency problems in UML-based

software development”. In UML Modeling Languages and

Applications, Springer Berlin, Heidelberg, pp. 1-12, 2005.

[24] Bansal. J. C, Singh. P. K, Saraswat. M, Verma. A, Jadon. S. S,

Abraham. A. “Inertia weight strategies in particle swarm op-

timization”. In Third World Congress on Nature and Biolog-

ically Inspired Computing (NaBIC), pp. 633-640. IEEE 2011.

[25] Blondin. James. “Particle swarm optimization: A tutorial”.

http://cs.armstrong. edu/saad/csci8100/pso tutorial.pdf , 2009.

[26] Shi. Y, Eberhart. R. “A modified particle swarm optimizer”. In

Evolutionary Computation Proceedings, IEEE World Con-

gress on Computational Intelligence, pp. 69-73, IEEE 1998.

[27] “Particle Swarm Optimization”, Computational Intelligence:

Second Edition, http://ci.cs.up.ac.za/chapter16.pdf

[28] Rasch.Holger, Heike. Wehrheim. “Checking consistency in

UML diagrams: Classes and state machines”. In Formal

Methods for Open Object-Based Distributed Systems,

Springer Berlin Heidelberg, pp. 229-243. 2003.

[29] Chiorean. Dan, Mihai. Paşca, Adrian. Cârcu, Cristian. Botiza,

Sorin. Moldovan. “Ensuring UML models consistency using

the OCL Environment”. Electronic Notes in Theoretical

Computer Science, 102, pp. 99-110, 2004.

[30] Briand. Lionel. C, Yvan. Labiche, L. O. Sullivan. “Impact

analysis and change management of UML models”. In Pro-

ceedings of the International Conference on Software

Maintenance (ICSM), pp. 256-265, IEEE 2003.

[31] Soeken. Mathias, Robert. Wille, Mirco. Kuhlmann, Martin.

Gogolla, Rolf. Drechsler. “Verifying UML/OCL models using

Boolean satisfiability”. In Proceedings of the Conference on

Design, Automation and Test in Europe, European Design

and Automation Association, pp. 1341-1344, 2010.

[32] Szlenk. Marcin. “Formal Semantics and Reasoning about

UML Class Diagram”. In International Conference on De-

pendability of Computer Systems (DepCos-RELCOMEX’06),

pp. 51-59, IEEE 2006.

[33] Lucas. Francisco. J, Fernando. Molina, Ambrosio. Toval. “A

systematic review of UML model consistency management”,

Information and Software Technology, 51(12), pp.

1631-1645, 2009.

[34] Mens. Tom, Ragnhild. Van. Der. Straeten, Jocelyn. Sim-

monds. “A framework for managing consistency of evolving

UML models”, Software Evolution with UML and XML,

pp.1-31, 2005.

[35] Engels. Gregor, Reiko. Hecke.l, Jochen. Malte Küster.

“Rule-based specification of behavioral consistency based on

the UML meta-model”. In ≪ UML≫ 2001-The Unified

Modeling Language. Modeling Languages, Concepts, and

Tools, Springer Berlin Heidelberg, pp. 272-286, 2001.

[36] Egyed. Alexander, Emmanuel. Letier, Anthony. Finkelstein.

“Generating and evaluating choices for fixing inconsistencies

in UML design models”. In 23rd IEEE/ACM International

Conference on Automated Software Engineering (ASE 2008),

pp. 99-108, IEEE 2008.

[37] Evans. Andy. S. “Reasoning with UML class diagrams”. In

Proceedings of the 2nd IEEE Workshop on Industrial

Strength Formal Specification Techniques, pp. 102-113,

IEEE 1998.

[38] Genero. M, Piattini. M, Calero. C. “A survey of metrics for

UML class diagrams”, Journal of object technology, 4(9), pp.

59-92, 2005.

[39] Perdita. Stevens., Rob Pooley. Using UML software Engi-

neering with Objects and Components, Pearson Education,

2003.

[40] Blanc. Xavier, Alix. Mougenot, Isabelle. Mounier, Tom. Mens.

“Incremental Detection of Model Inconsistencies Based on

Model Operations”. In CAiSE, (9), pp. 32-46, 2009.

[41] Kaneiwa. Ken, Ken. Satoh. “On the complexities of con-

sistency checking for restricted UML class diagrams”, Theo-

retical Computer Science, 411(2), pp. 301-323, 2010.

[42] Kiranyaz. Serkan, Jenni .Pulkkinen, Moncef. Gabbouj. “Mul-

ti-dimensional particle swarm optimization in dynamic envi-

ronments”, Expert Systems with Applications 38(3), pp.

2212-2223, 2011.

[43] Diskin. Zinovy, Yingfei. Xiong, Krzysztof. Czarnecki.

“Specifying overlaps of heterogeneous models for global

consistency checking”. In Proceedings of the First Interna-

tional Workshop on Model-Driven Interoperability, pp. 42-51,

ACM 2010.

[44] Zhan. Shaobin, Hongying. Huo. “Improved PSO-based task

scheduling algorithm in cloud computing”, Journal of In-

formation & Computational Science, 9(13), pp. 3821-3829,

2012.

Author Biographies

Renu George acquired her M.Tech degree in Computer

and Information Science from Cochin University of

Science and Technology and B.Tech degree in Computer

Science and Engineering from Kerala University. She is

an Assistant Professor in College of Engineering,

Chengannur, Kerala, India and Ph.D research scholar in

Cochin University of Science and Technology. Her areas

of interest include compiler design, automata theory,

UML modeling and design, software engineering and ar-

tificial intelligence.

 Dr. Philip Samuel is an Associate Professor in Infor-

mation Technology at Cochin University of Science and

Technology, Kochi. He holds a Ph.D degree in Computer

Science & Engineering from Indian Institute of Tech-

nology, Kharagur and an M.Tech degree in Computer and

Information Science from Cochin University of Science

and Technology. He has several research publications in

international conferences and journals. His research in-

terests include Artificial Intelligence, Distributed Com-

puting, UML Modelling and Design and Software Engi-

neering.

