
Journal of Network and Innovative Computing

ISSN 2160-2174 Volume 4 (2016) pp. 220-228

© MIR Labs, www.mirlabs.net/jnic/index.html

Dynamic Publishers, Inc., USA

Data Triggered Programming Model for Text

Processing in Big Data

Sandhya N1, Philip Samuel2 and Mariamma Chacko3

1Information Technology,

Cochin University of Science and Technology,

Kochi - 682022,

nairsands@gmail.com

2Information Technology,

Cochin University of Science and Technology,

Kochi - 682022,
philips@cusat.ac.in

3Department of Ship Technology,

Cochin University of Science and Technology,

Kochi - 682022,

 mariamma@cusat.ac.in

Abstract - Large volume of text processing becomes a challenge

in recent era. Text processing methods drive much of modern

data analysis across engineering sciences and commercial

applications. Extraction of useful information from text sources

refers to text analytics. This term describes tasks from

annotating text sources with meta-information such as places

mentioned in the text and a wide range of documents. The

key/value pair generation of MapReduce program creates

memory overhead and deserialization overhead due to data

redundancy. Redundancy of data is one of the most important

factors that consumes space and affect system performance while

using large set of data. This overhead can be avoided

considerably by using a novel approach that we developed named

Data Triggered Multithreaded Programming (DTMP) model. In

this paper, we demonstrate the use of DTMP model using a large

dataset with author details and his publications. The Data

Triggered Multithreaded Programming can dynamically allocate

the resources and can identify the data repetition occurring

during computation. DTMP model when applied to the

MapReduce programming model brings performance

improvement to the system. The major contributions of this work

are a simple and scalable processing of text data that enables

automatic parallelization and distribution of large-scale

computations.

Keywords: Big Data Computing, Data Centric Architectures, Data

Parallelism, MapReduce, Scalable, Data Triggered Multithreading

I. INTRODUCTION

With the development of technology, computing devices,

social network sites, ecommerce services, sensors and mobile

data has led us to an era of data explosion. Big Data refers to

large and complex, structured and unstructured data in the

order of exabytes and pentabytes [1]. The main four

characteristics of big data are the four V’s i.e, volume, velocity,

veracity and variety. The term volume refers to the large

quantity of data, the term velocity refers to the travelling speed

of data and the processing speed, the term variety refers to the

diversity of data types and veracity is the ability to trust

accurate data and the reliability of data [1].

 In traditional high-performance computer applications (e.g.,

for weather forecasting), it is common place for a

high-performance computer to have processing nodes and

storage nodes connected together by a high-capacity

interconnect. MapReduce programming model is an

architecture where processors and storage devices are

co-located. In such cases, we can take advantage of data

locality by running code on the processor directly attached to

the block of data we need [3].

 In current computer architectures, it is harder to overcome

the data-intensive computation such as the latency gap

between multi-core CPUs and mechanical hard disks, which is

growing every year [31]. Hence, it is necessary to tackle these

problems in a scalable manner with a scalable architecture

model. Gray argued that the new trend should focus on

supporting cheaper clusters of computers to manage and

process all this data instead of focusing on having the biggest

and fastest single computer.

 In the distributed file system, frameworks have been

developed for large volume of data processing. Text

processing is one of the big data processing challenges. Basic

element in text processing is the document processing.

Document can be defined as a unit of discrete textual data in

which usually within a collection of text data will correlates

with some real world text document such as e-mails, research

papers, blog reports, manuscripts and press release. A

document can also be a member of different document

collections, or different subsets of the same document

collection [2].

 A text document may be seen from different perspectives, as

a structured or semi-structured format of data. Document itself

mailto:nairsands@gmail.com1
mailto:philips@cusat.ac.in2

Data Triggered Programming Model for Text Processing in Big Data

221

explains a large amount of semantic and syntactical structure,

this structure is implicit and to some extend hidden in its

textual context [2]. We can consider the elements such as

punctuation marks, capitalization, numeric, and special

characters such as white space, carriage returns, underlining,

asterisks, tables, columns and so on. Text documents are

strong typographical layout or mark-up indicators to denote

structure [2]. Text documents with extensive and consistent

format elements in which field-type metadata can be more

easily inferred such as e-mail, HTML web pages, PDF files

and word processing files with document templating or

style-sheet constraints are described as semi-structured text

documents. One of the most important programming models

is MapReduce [4], [5]. It is an emerging programming model

for data-intensive applications. The idea behind MapReduce is

from functional programming, where the programmer defines

Map and Reduce functions to process large sets of distributed

data. It was originally developed by Google and built on

well-known principles in parallel and distributed processing

several years back. MapReduce has widespread adoption via

an open-source implementation called Hadoop, whose

development was led by Yahoo. Today, a vibrant software

ecosystem has sprung up around Hadoop, with significant

activity in both industry and academia.

 The Workflows [9] which are widely used in data-intensive

text processing applications since it facilities the composition

of individually developed executable or scripts types, making

it easier for the experts to focus on their research rather than

the management of analysis and computation. Many systems

are proposed to execute workflows, including GXP Make [11],

Swift. A workflow is generally a DAG with many data

processing tasks and their dependencies. Each task is a typical

existing binary or executable [40]. For example, workflows in

natural language processing (NLP) typically consist of

sentence splitters, part-of-speech taggers, named entity

recognizers, parsers, data indexers, and so on. Many of parsers

are third-party components that received a considerable

amount of development efforts in the community [40].

 The text mining algorithms operate on the feature based

notations of the text document. The first goal of this is to

achieve correct calculation of the volume and the semantic

level of features to picture the text accurately [2]. This tends to

favourably disposed towards text mining pre-processing

operations towards selecting or extracting relatively more

features to represent text document [4]. The next goal is to find

out the computationally efficient features for pattern

recognition, which supports validation, normalization, or

cross-referencing of features against vocabularies or external

sources such as dictionary or thesauri which are semantically

rich feature. Different features can be taken to represent text

document, the following four features are most commonly

used:

 Characters: The character level representation can

include the full set of all characters for a text

document or some subsets. For text mining

applications, character-based representation without

positional information are often utilized in a limited

manner. This type of representation includes some

level of positional information. This feature type can

be viewed as the most complete of any representation

of a real-world text document [2].

 Words: Word level features are sometimes referred

to as existing in the native feature space of the text

processing. In the case of linguistic token, a single

word level feature should equate with that. Phrases,

multiword expressions or multiword hyphenates

would not constitute single word level features [2].

 The Data Triggered Multithreaded Programming (DTMP)

Model inherits the power of eliminating redundant

computation from data triggered thread but enhances the

design of the programming model and runtime system to

demonstrate the ability to support massive data-level

parallelism [3] , [4]. The DTMP model provides a new type of

data trigger declaration that allows programmers to trigger

computation more efficiently. The DTMP model also allows

programmers to describe the ordering of triggered

computation. The DTMP model supports many threads

running at the same time and executes threads in and

out-of-order fashion [5].

 In traditional distributed high performance computing

systems (e.g., Gnome purpose), it is common for a master

computer to have nodes for processing and nodes for storage,

this is connected through large bandwidth connectivity

network. Since workloads are not processor demanding, this

storage and data interaction creates large problems. That is

where this hadoop type architecture comes in to existence,

where processors and storage are co-located. In such a setup,

we can take advantage of data locality by running code on the

processor directly attached to the block of data we need. The

distributed file system is responsible for managing the data

over which MapReduce operates.

 In this paper, we propose a Data Triggered Multithreaded

Programming together with MapReduce programming model

[7]. This DTMP model is a data centric programming model

obtained from the data-triggered threads (DTT) model to

better understand the need for data-centric computing. DTMP

model initiates parallel computation when the application

changes memory content.

 This paper is organized as follows. Section 2 discusses

related work. In section 3 we provide the details of

Multithreaded MapReduce Model. Section 4 is Case study of

the Threaded MapReduce Model using an Author dataset.

Section V is the Conclusion of the paper.

II. BIG DATA TEXT PROCESSING CHALLENGES

To handle Big Data in a scalable manner for an intelligent

learning database system [32], the essential method is to scale

up large volume of data and provide treatments for the

characteristics featured by the big data. The main

characteristics are volume, velocity, variety and veracity.

These characteristics can be considered in different forms to

handle different issues. Data volume issues become important

in the case of data accessing and computing. Veracity can be

issues in data privacy and domain knowledge can be

considered. Velocity and variety can be handled by different

Sandhya et al.

222

data mining algorithms. The challenges at volume of data

focus on data accessing and actual computing procedures.

Because big data are often stored at different locations and

data volumes may grow continuously. A scalable computing

platform will have to take distributed large-scale scalable data

storage into consideration for computing [32].

 The challenges of the next characteristics called variety

centred on semantics and domain knowledge for different Big

Data applications (Eg. Facebook). This information provides

additional benefits to the mining process, and also in addition

technical barriers to the Big Data access such as volume of

data and mining algorithms [31]. The data privacy and

information sharing mechanisms between data producers and

data consumers can be significantly different depending on

different domain applications. Sharing online streaming data

for applications like sensor data or gnome data may not be

discouraged. In addition to the above privacy issues, the

application domains can also provide additional information

to benefit or guide Big Data mining algorithm designs.

 Like association rule in market basket analysis of data, each

transaction is considered independent and the discovered

knowledge is typically represented by finding highly

correlated items, possibly with respect to different

dimensional aspects. In a social network, on the other hand,

users are linked and share dependency structures [10]. The

knowledge is then represented by user communities, leaders in

each group, and social influence modelling etc. For low-level

and high level data access understanding of semantics and

application knowledge is important in data processing

algorithms. The data mining challenges concentrate on

algorithm designs in tracking the difficulties raised by the Big

Data volumes, distributed data distributions, and by other

complex data processing characteristics.

 The third part contains three stages such as sparse, diverse,

uncertain, complex, and multi-source data are pre-processed

by data fusion techniques. Next is that, complex and dynamic

data are mined after pre-processing. Finally, the global

knowledge obtained is tested and relevant information is fed

back to the pre-processing stage.

III. DATA TRIGGERED ARCHITECTURE

The proposed model implements both Data Triggered

Multithreaded Programming model followed by the

MapReduce model which can improve the system

performance in a cost effective manner [24].

 As shown in Fig.1. We have data trigger and a trigger

point for the DTMP model and this process outputs the tasks to

a queue. We can modify the memory content of the data

through data trigger process. Trigger point that waits for the

completion of all outstanding events of a certain support

thread functions.

 The queued tasks are the input to the MapReduce model.

In the Map Reduce Model the data splits into different groups

and these are stored in the distributed file system. In this model

the main two phases are Map and Reduce.

Figure1. Architecture of Multithreaded MapReduce Model

 Data from the distributed file system are taken and fed to

the Map phase. Here dataset is represented in the form of

key/value pairs. These key/value pairs are sorted and shuffled.

Thus generate an intermediate key/value pair. This

intermediate key/value pairs are input to the Reduce function.

The output of the Reduce function is the final result which is

stored in the distributed file system.

A. MapReduce Programming Model

MapReduce programming has made large complex text data

processing easier to understand, efficient and tolerant of

hardware failures during computation [19]. This technology is

applied for batch processing of large volumes of data, and it is

not suitable for recent demands like real-time processing [8].

MapReduce [10] is a parallel data processing approach for

execution on computer cluster [3]. For text file processing

MapReduce is one of the important programming model. The

key strengths of the MapReduce programming framework are

parallelism combined with its simple programming framework

and it can be applicable to a large variety of application

domains. This requires dividing the workload across more

number of machines. The degree of parallelism depends on the

input data size [3].

 MapReduce programming model defines Map function and

Reduce function. The Map function performs sorting and

filtering of the input data. The input data to Map function is in

the form of key/value pair [10]. The Map function in the

MapReduce programming is fed with data stored on the

distributed file system are split across the nodes in the cluster.

The Map tasks are started on the compute nodes and Map

function is applicable to each Key/Value pair and the output of

the Map function is intermediate Key/Value pairs. This

intermediate Key/Value pairs are stored in the local file system

and sorted by the keys [3].

 The Reduce() function performs the addition operation. The

Reduce function takes the intermediate Key/Value pair as the

input and a list of intermediate values with that key as its input.

All key-value pairs for the same key are fed to the same

function [2]. A Reduce function is applied to all values

grouped for one key and in turn generates Key/Value pairs.

Key/value pairs from each reducer are written on the

distributed file system. The final output will be set of values.

Data Triggered Programming Model for Text Processing in Big Data

223

B. Data Triggered Multithreaded Programming

The DTMP programming eliminates redundant computation

but improves the design of the programming model and

runtime system to describe the capability to support massive

data-level parallelism [10]. The DTMP programming provides

a triggering of data for declaration that allows programmers to

more efficiently trigger computation [12].

 The DTMP programming also allows programmers to

describe the ordering of triggered computation [24]. The

DTMP programming supports multiple threads running at the

same time and executes threads in and out of order manner.

Based on the changes happen in the memory address locations

that triggers the data computation, the runtime system of

DTMP can dynamically schedule computation to the most

appropriate computing resource to reduce the amount of cache

misses and data synchronization traffic. The runtime system

can also balance the workload among processing units [12].

The user of the DTMP model achieves parallelism by

declaring data triggers and an associated thread function

[24].

 The Data Triggered Multithreaded Programming model, the

user can declare a variable, a data structure and a triggering

thread [12]. The triggering thread can be assigned to the

variable. The fields in the data structure contain the attributes

of data for processing. The supporting thread function

describes the computation, when the program changes

the value of a data trigger [13]. In our DTMP model we

are using data trigger and trigger point. The data

trigger operation can modify the data trigger’s memory

content, and trigger point waits for the completion of

all occurrences of all the supporting thread functions

[13].

When this application executes data trigger operation,

then these following steps are executed [131].

 The DTMP system checks for any changes in the

current version. If the system detects any changes, then

it will create new thread function event contain ing the

changed address and the supporting thread function

connected with the triggering data. DTMP system will

increase the trigger point to the next value associated

with the thread function. If the system does not detect

any changes then it will not trigger any data.

 The changed address is analysed and then

enqueue the appropriate task.

 When supporting thread function finishes its

execution and the polling thread notifies the system

and release the completed tasks in the queue. Then the

trigger point will decreases its counter value

associated with the supporting thread function.

 When the program reaches the trigger point of the

supporting thread function, then it stops its operation

and checks for any incomplete tasks associated with the

trigger point. Thus the program resumes, if pending

task does not exist with the trigger point.

 Data repetition creates large amount of unwanted

threads results in performance degradation [12]. The data

triggered is defined with continuously changing element. In

the DTMP model the destination value of the assignment

changes and the data thread triggers when a same data fields

appears in the data set. If all the attributes or fields of one data

match then the triggering of data occurred. This application

can be used to trace any particular event or element of large

dataset to reduce redundancy.

IV. Implementation on Authors Dataset Model
The proposed model uses a large dataset, which consists of

author and his publication details, i.e. authorId, author name,

publications details. So for the processing of dataset we are

taking authorid and his number of publications in this

example.

 We process this author dataset using data triggered

multithreading first and then this dataset will be input to the

MapReduce programming model. The data triggered

programming requires declaration of the data triggers to

achieve parallelism and associated with each trigger needs a

supporting thread function. The following steps are required

for the first processing of the data triggered programming. For

each author, a data structure field is created.

i. We can declare a variable to the author name.

ii. Value is assigned for each author id as the data trigger

which is associated with author name.

 As shown in Table 1. Data structure is defined with

name ‘author’ and contains fields such as authorid, papercount,

and citations. These are the details of the dataset which we are

processing. Next we defined the data triggered thread function

which contains thread pointer and filetype pointers for the

fields in the data structure [24].

Table 1.Data Triggered Model for Author Dataset

Author Declaration

Typedef struct author {

 author_id;

 papercount;

 citations; ……. }

author;

Data triggered function

int author_thread(void *aid_ptr) {

int i, j, k;

fptype authorid;

fptype publishno;

fptype citation;

return 0; # trigger_point data author_thread Inner loop

This triggering model allows the user to declare a data trigger

after an assignment statement. The data triggers multithreaded

execution when the destination value of the assignment

changes. i.e. when an author_id with same author name and

same publications arrives this triggers and redundancy

recognized and repeated ‘authorid’ are not entered to the

refined dataset. If both the fields are same then only it is

considered as redundant data. Redundant threads can be

eliminated to an extent.

 As shown in Figure 2. completing redundancy check by the

DTMP model, this is entered to a dataset. From main dataset

which is of refined form with no redundant data, here we

enqueue the tasks and the input is fed to the MapReduce

programming model. The author name, publications and

citations are available in the dataset. In the Map phase the

Sandhya et al.

224

sorting and shuffling takes place and author names are taken as

keys and publication numbers are taken as values.

Figure 2. Multithreaded MapReduce Model Design Using

Author Dataset

 When a MapReduce task is submitted to the system then the

map task applies the Map function to every Key/Value pair

(author1, publicationno). Zero or more intermediate

Key/Value pairs (list(authors, publications)) are generated for

the same input Key/Value pair. These are stored in the

distributed file system and sorted by the keys.

Table 2. Algorithm Map and Reduce Functions

Algorithm 1: Map Function

Input : String Authorid, publicationno

Key : Messageid, value: document value

String[] twittermessage = value.split(“|”)

Intermediatekey(article[0], ParseFloat(twittermessage [2]))

Algorithm 2: Reduce Function

Input : String key, Iterator values

Float totalmessage = 0;

While values.hasNext() do

 Totalmessage + = values.next();

End

 Completion of the map tasks notifies the reducer by the

MapReduce engine. In the reduce phase, the output files from

the map tasks are taken in parallel and sort the files to combine

the Key/Value pairs into a set of new Key/Value pairs i.e,

(authors,list(publications)), where all publications with the

same author are listed. The reduce function is applied and the

final list total number of authors and publications are

generated. Based on this author and publication list journal

ratings are calculated.

 If the above dataset is processing only through

MapReduce programming model then redundant data will be

more. Since we are taking this dataset of author details from

different sites, blogs or databases, repetition of data will be

there. Data triggered threads usage avoids this to a minimum.

In this data triggered model we are assigning values to some

variable. If repetition occurs then the variable changes its

value and data triggering occurs.

V. Related Works

As the data grows, the availability of high performance and

relatively low-cost hardware database systems are parallelized

to run on multiple hardware platforms to manage scalability

[8]. MapReduce model, whose basic idea is to simplify the

distributed computing platform that offers two main functions

Map and Reduce. The MapReduce programming model can

be used to solve parallel problems [8]. This model can be used

in applications such as data mining, machine learning and

scientific computations. Hadoop, a popular big data

processing framework implements this MapReduce

programming model [6].

 One of the important characteristics of Big Data is

computing tasks on the large dataset, because of the different

sources, large volume, heterogeneous and dynamic

characteristics of application data involved in a distributed

environment. The terabyte and petabyte level of data with a

complex computing process is very difficult. Hence, utilizing a

parallel computer infrastructure, its corresponding

programming language support, and software models to

efficiently analyze and mine the distributed dataset, The data’s

are the critical goal for Big Data processing to change from

“quantity” to “quality”. Currently, Big Data processing mainly

depends on parallel programming models like MapReduce, as

well as providing a cloud computing platform of Big Data

services for the public. MapReduce is a batch oriented parallel

computing model. There is still a certain gap in performance

with relational databases. How to improve the performance of

MapReduce and enhance the real-time nature of large-scale

data processing is a hot topic in research.

 The MapReduce parallel programming model has been

applied in many machine learning and data mining algorithms

in different applications. To solve and optimise model

parameters in machine learning applications data mining

algorithms usually need to go through different training

datasets. It calls for intensive computing to access the

large-scale data frequently. In order to improve the efficiency

of algorithms, [32] proposed a general-purpose parallel

programming method which is applicable to a huge number of

algorithms which support machine learning based on the

simple MapReduce programming model on multi-core

processors. Many classic data mining algorithms are included

such as locally weighted linear regression, k-Means, logistic

regression, support vector machines, the independent variable

analysis, Gaussian discriminant analysis, expectation

maximization and back propagation neural networks [32].

With the analysis of these classical machine learning

algorithms, we argue that the computational operations in the

algorithm learning process could be transformed into a

summation operation on a number of training data sets.

 Then various addition operations could be performed on

these Mapper nodes to get intermediate results. Finally, text

processing algorithms are parallel executed through collecting

all Reducer nodes. Ranger [33] proposed a MapReduce based

application programming interface Phoenix, which supports

parallel programming in the environment of multi-core and

multi-processor systems, and realized three data mining

Data Triggered Programming Model for Text Processing in Big Data

225

algorithms including k-Means, principal component analysis,

and linear regression.

 The MapReduce’s implementation mechanism in Hadoop

has been improved by Gillick and evaluated the algorithm’s

performance of single-pass learning, iterative learning and

query-based learning in the MapReduce framework [34]. He

also studied how to share data between computing nodes

involved in parallel learning algorithms and how to work with

distributed storage data, and then showed that the MapReduce

mechanisms suitable for large-scale data mining by testing

series of standard data mining tasks on medium-size clusters

[34].

 The number of input data text files greatly affects

MapReduce processing time, especially in the big data

processing. In order to decrease the MapReduce processing

time, we need to pre-process the input data for the mapper. In

the context of batch processing data, large semi-structured and

unstructured data of different documents, the data itself is a

raw data obtain directly from text document.

 The common types of errors in text data processing is

redundancy readings (duplicate reads). This redundancy

problem is recognized as a serious issue in batch processing.

Redundancy can happen at two different levels, reader level or

data level.

 Reader level redundancy occurred when there are more than

one reader or different factors that affecting text data.

 Data level redundancy occurred as unwanted and unreliable

data. It happens when text documents or text data taken from

social networking sites or blogs.

 In protection of massive text data, proposed a multi-layer

rough set model, which can accurately describe the granularity

change produced by different levels of generalization and

provide a theoretical foundation for measuring the data

effectiveness criteria in the unremarkable process, and

designed a dynamic mechanism for balancing privacy and data

utility, to solve the optimization of refinement order for

classification algorithms [35].

 A recent paper on protection of confidentiality in big data

summarizes a number of methods for protecting public release

data, including aggregation, suppression, data swapping (i.e.,

switching values of sensitive data records to prevent users

from matching), adding random noise, or simply replacing the

whole original data values at a high risk of disclosure with

values synthetically generated from simulated distributions

[36].

 For applications involving Big Data and tremendous data

volumes, it is often the case that data are physically distributed

at different locations, which means that users no longer

physically possess the storage of their data.

 In the processing of text or document mining, having an

efficient and effective data access mechanism is vital,

especially for users who intend to hire a third party to process

their data. Under such a circumstance, users’ privacy concerns

may include:

 No local data copies or downloading of data

 Different data analysis must be deployed based on the

existing data storage systems without violating existing

privacy settings, and many others.

 Wang proposed a privacy preserving mechanism for large

scale data storage such as cloud computing systems has been

proposed [36]. The public key based mechanism is used to

enable Third Party Auditing (TPA), so users can safely allow a

third party to analyse their data without breaching the security

settings or compromising the data privacy.

 For most Big Data applications, privacy concerns focus on

excluding the data miners from directly accessing the original

data. Common solutions are to rely on some privacy

preserving approaches or encryption mechanisms to protect

the data.

 A recent effort by [37] indicates that users’ “data access

patterns” can also have severe data privacy concerns and lead

to disclosures of geographically co-located users or users with

common interests. In their system, it hides data access patterns

from the servers by using virtual disks.

 As a result, it can support a variety of 20 Big Data

applications, such as blog search and social network queries,

without compromising the user privacy. Big Data Mining

Algorithms, in order to adapt to the multi-source, massive,

dynamic Big Data, researchers have expanded existing data

mining methods in many ways, including the efficiency

improvement of single-source knowledge discovery methods

[38], designing a data mining mechanism from a multi-source

perspective [39] as well as the study of dynamic data mining

methods and the analysis of convection data.

 The main motivation for discovering knowledge from

massive data is improving the efficiency of single-source

mining methods. On the basis of gradual improvement of

computer hardware functions, researchers continue to explore

ways to improve the efficiency of knowledge discovery

algorithms to make them better for massive data.

 Text analytics spans across virtually all verticals. We

frequently come across text analytics use cases in finance,

insurance, media, and retail industries, but even oil and gas

companies can derive value from text analytics. A typical

text-analytics application in the finance industry focuses on

compliance and fraud prevention.

 Different data retrieval text processing for full-text search

today rely on a data structure called an inverted index, it will

give a term which provides access to the list of documents that

contain the term. In information retrieval parlance, objects to

be retrieved are generically called documents, even though in

actuality they may be web pages, PDFs, texts in different

social networking sites [2].

 When user queries are thrown then the text retrieval process

uses the inverted index to achieve documents that contain the

query terms with respect to some ranking model, taking into

account features such as term matches, term proximity,

attributes of the terms in the document, as well as the hyperlink

structure of the documents [2].

 The web search problem which we are handling in our day

today life are decomposes into three components namely

gathering web content also called crawling construction of the

inverted index and ranking documents, which means if given a

query retrieval.

 Crawling and indexing share almost same characteristics

and requirements, but these are very different from retrieval.

Gathering web content and building inverted indexes are for

the most part offline problems. Both need to be scalable and

efficient, but they do not need to operate in real time. Indexing

is usually a batch process that runs periodically: the frequency

Sandhya et al.

226

of refreshes and updates is usually dependent on the 65 design

of the crawler.

 Dataflow architectures are similar to data triggered

programming which tries to achieve parallelism by triggering

computation. The data flow architectures require hardware

support which is more costly and complex [10].

 The data triggered model does not require any hardware

support and provides composing applications. The data

triggered programming shares the same functionalities as Cilk

[16] and CEAL [17] that extends dataflow like programming

and execution models on conventional architectures.

 Cilk exploits dataflow parallelism like functional

programming language. CEAL encourages programmers to

use incremental algorithms on changing data to avoid

redundant computation. The DTMP model extends

Data-Triggered Threads, which is designed to exploit both

dataflow-like parallelism and reduce redundant computation

[8].

 The programming model of DTMP is similar to Habanero

[6] in triggering multithreaded computation asynchronously,

in allocating tasks and load balancing. The DTMP model, the

program can avoid redundant computation that Habanero does

not address.

VI. PERFORMANCE EVALUATION

Here as shown in Fig.3. performance test evaluation is done

using an author dataset. Our performance measurements are

made on Ubuntu personal computer with an Intel Core 2 Quad

Q6600 (3 CPUs) 2.4 GHz processor, 4 GB of main memory,

Java Runtime Environment 1.7 and Eclipse IDE as

development tool.

 Test dataset consists of author_id, author name, publication

details and citation details with the size of 5GB, 3GB and 2

GB data. The first testing attempt is done by removing

redundant data in a 1GB data, number of threads generated is 6

and without removing redundant data number of threads

generated is 10.

 Second attempt is using a 3 GB data by removing

redundant data number of threads generated is 9 and original

data for processing number of threads generated is 16.

 Third attempt is using 5GB data, by removing redundant

data, number of threads generated is 11 and by original data,

number of threads generated is 20.

 Here the graphs with data triggered multithreaded

programming model is coloured red and bar graph without

data triggered programming model is shown as blue. From the

above performance evaluation graph we could measure the

performance improvent of the system with data triggered

multithreaded model(DTMP) over without data triggered

multithreaded model.

 Results show that the algorithm works well in minimizing

the dataset by removing redundant data and improves the

system parallelism, which improves system performance.

Thus we can see that by minimizing the dataset i.e. optimizing

the dataset the performance can be improved to an extent, thus

processing time decreases. Hence the overall system

performance increases .

Figure 3. Performance evaluation

VII. CONCLUSION

Due to the technological growth and data explosion, handling

data in scalable and efficient manner is necessary. Usage of

large volume of data in different applications, redundancy is

one of the important factors which consumes space and affect

the system performance. By processing the large dataset using

multithreaded data triggering method redundant data can be

reduced.

 Repetition of data during processing affects the system

performance. MapReduce model has limited capability of

controlling redundant data. Document mining or text mining

dominated by a data-driven, empirical approach, typically

involving algorithms that attempt to capture statistical

regularities in data for the purposes of some task or application

For batch processing types of data processing MapReduce

model provides faster computation.

 Due to large volume of data the key-value pair generation of

MapReduce program creates memory overhead and

deserialization overhead. This overhead can be avoided to the

maximum by using Data Triggering Programming Model.

Processing large volume of data using this DTMP model and

then sending to MapReduce Model helps to improve the

performance of the system.

 Thus the data triggered programming together with

MapReduce programming brings performance improvement.

Thus our system has the power to reduce redundancy and

improve performance.

 This proposed system can also achieve better scalability

than normal MapReduce programming model. As shown in

Fig.3. performance of the system has been improved by using

DTMP model when compared with normal MapReduce

programming. This type of model can used for social

networking sites such as twitter and facebook.

 As we use data triggering multithreaded programming

model, tracing particular member or particular issue becomes

simpler. This proposed system strengthens the MapReduce

technology with our DTMP model and serves as a basis for

further experimentation.

Data Triggered Programming Model for Text Processing in Big Data

227

REFERENCES

[1] Arvind and R.S. Nikhil. “Executing a program on the

mit tagged-token dataflow architecture”, IEEE

Transactions on Computers, pp.300–318, 1990.

[2] Lin, Jimmy, and D. Chris. “Data-intensive text

processing with MapReduce, Synthesis Lectures on

Human Language Technologies, vol. 3, pp.177, 2010.

[3] F. Li , B.C. Ooi, Tamer, M. Ozsu, and S.Wu.

“Distributed data management using MapReduce, In

ACM Computing Surveys (CSUR), vol. 46, Issue 3,

2014.

[4] P. Bhatotia, A. Wieder, R. Rodrigues, U. A. Acar.

and R. Pasquin, “Incoop, MapReduce for incremental

computations, In ACM SOCC”, 2011.

[5] H.-W. Tseng, and D. M. Tullsen, Data-triggered

threads: Eliminating redundant computation. “In 17th

International Symposium on High Performance

Computer Architecture”, pp.181–192, 2011.

[6] V. Cave, J. Zhao, J. Shirako, and V. Sarkar.

“Habanero Java -The new adventures of old x10”. In

Proceedings of the 9th International Conference on

Principles and Practice of Programming in Java,

PPPJ ’11, pp. 51-61,2011.

[7] J. Dean, and S. Ghemawat. “Mapreduce: simplified

data processing on large clusters”. ACM Proceedings,

Jan. pp.107–113, 2008.

[8] Arvind, and R. S. Nikhil. “Executing a program on

the mit tagged-token dataflow architecture”. IEEE

Transactions on Computers, pp. 300–318 1990.

[9] E. Deelman, D. Gannon, M. S. Shields, and I. Taylor,

“Workflows and e-science. An overview of workflow

system features and capabilities,” Future Generation

Comp. Syst., vol. 25, no. 5, pp. 528–540, 2009.

[10] J. Steffan, C. Colohan, A. Zhai , and T. Mowry. “A

scalable approach to thread-level speculation”. In

27th Annual International Symposium on Computer

Architecture, pp. 1-12, 2000.

[11] K. Taura, T. Matsuzaki, M. Miwa. “Design and

implementation of gxp make – a workflow system

based on make,” in eScience2010, pp. 214–221.

[12] S. Hong, H. Kim. “An analytical Model for a GPU

Architecture with Memory-Level and Thread-Level

Parallelism Awareness”, In: ACM SIGARCH

Computer Architecture News, pp. 152–163, 2009.

[13] H.-W. Tseng, and D.M Tullsen. “Data-triggered

Multithreading for Near-Data Processing”. In 1st

Workshop on Near-Data Processing (WoNDP), 2013.

[14] Miner, Donald, Adam. “ MapReduce Design Patterns:

Building Effective Algorithms and Analytics for

Hadoop and Other Systems”, ‘O’Reilly Media Inc.

2012.

[15] H.C. Yang, A. Dasdan, R.L. Hsiao, D.S. Parker.

“MapReduce-merge: simplified relational data

processing on large clusters”, In ACM SIGMOD ’07,

pp. 1029–1040, 2007.

[16] Z. Matei, K.i. Andy, D.J. Anthony, H. Randy, Katz,

and S. Ion. “Improving MapReduce performance in

heterogeneous environments”. In Proceedings of the

8th USENIX Symposium on Operating System Design

and Implementation, pp. 29–42, 2008.

[17] H.-W. Tseng, D.M. Tullsen. “Software data-triggered

threads”. In ACM SIGPLAN 2012 Conference on

Object-Oriented Programming, Systems, Languages

and Applications, 2012.

[18] Brunett, J. Thornley, M. Ellenbecker. “An initial

evaluation of the tera multithreaded architecture and

programming system using the the c3i parallel

benchmark suite”. In Proceedings of the 1998

ACM/IEEE conference on Supercomputing (SC 1998),

pp.1–19, 1998.

[19] B. Lewis, D.J. Berg. “Multithreaded Programming

with Pthreads”. Prentice Hall, 1998.

[20] M. Frigo, C.E. Leiserson, K.H. Randall. “The

implementation of the cilk-5 multithreaded language”.

In ACM SIGPLAN 1998 conference on Programming

language design and implementation, pp.212–223,

1998.

[21] M. A. Hammer, U. A. Acar, Y. Chen. “ CEAL: A

C-based language for self-adjusting computation”. In

ACM SIGPLAN 2009 conference on Programming

language design and implementation, pp.25–37 2009.

[22] K. Shim. “MapReduce Algorithms for Big Data

Analysis Databases in Networked Information

Systems”. Springer Berlin Heidelberg, pp.44-48

2013.

[23] Leung, Carson, Kai-Sang, H. Yaroslav. “Mining

frequent patterns from uncertain data with MapReduce

for Big Data analytics. Database Systems for

Advanced Applications”. Springer Berlin Heidelberg,

2013.

[24] N. Sandhya, P. Samuel. “Data Dentric Text Processing

using MapReduce”. In Proceedings of the 6th

International Conference on Innovations in

Bio-Inspired Computing and Applications, IBICA’15,

pp.129-137, 2015.

[25] A. Machanavajjhala, P. Jerome, Reiter. “Big privacy:

Protecting Confidentiality in Big data”, ACM

Crossroads, 19(1) pp.20-23, 2012.

[26] C. Ranger, R. Raghuraman, A. Penmetsa , G. Bradski,

C. Kozyrakis. “Evaluating MapReduce for multi-core

and multiprocessor systems”, In: Proceedings of the

13th IEEE International Symposium on High

Performance Computer Architecture (HPCA '07), pp.

13-24, 2007.

[27] D. Gillick , A. Faria, J. DeNero. “MapReduce:

Distributed Computing for Machine Learning”,

Berkley, December 18, 2006.

[28] S. Das, Y. Sismanis, K.S. Beyer, R. Gemulla , P.J.

Haas, J. McPherson, Ricardo. “Integrating R and

Hadoop”, In: Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data

(SIGMOD '10), 2010, pp. 987-998, 2010.

[29] D. Wegener, M. Mock, D. Adranale, S. Wrobel.

“Toolkit-Based high-performance data mining of large

data on MapReduce clusters”, In: Proceedings of the

ICDM Workshop, pp. 296-301, 2009.

[30] A. Ghoting, E. Pednault. “Hadoop-ML: An

infrastructure for the rapid implementation of parallel

reusable analytics”, In: Proceedings of the

Large-Scale Machine Learning: Parallelism and

Massive Datasets Workshop (NIPS-2009).

Sandhya et al.

228

[31] G.Bell, J. Gray, and S. Alexander. “Petascale

Computational Systems”, IEEE Computer, 39(1):

pp.110-112.

[32] Gandomi, Amir, M. Haider. “ Beyond the hype: Big

data concepts, methods and analytics”, International

Journal of Information Management , pp. 137-144,

2015.

[33] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski,

C. Kozyrakis, “ Evaluating MapReduce for multi-core

and multiprocessor systems”, In the Proceedings of

the 13th IEEE International Symposium on High

Performance Computer Architecture (HPCA '07),

2007, pp. 13-24.

[34] N. Marz, J. Warren. “Big Data: Principles and best

practices of scalable realtime data systems”, Manning

Publications Co, 2015 Mar 31.

[35] M. Ye, X. Wu, X. Hu, D. Hu. “Anonymising

classification data using rough set theory,

Knowledge-Based Systems”, 43: pp. 82-94, 2013.

[36] Q. Wang, K. Ren, W. Lou. “Privacy-Preserving

Public Auditing for Data Storage Security in Could

Computing”, IEEE Transactions on Computers,

62(2):pp. 362-375, 2013.

[37] J. Lorch, B. Parno, J. Mickens, M. Raykova, and J.

Schiffman, Shoroud “ Ensuring Private Access to

Large-Scale Data in the Data Center”, In: Proc. of the

11th USENIX Conference on File and Storage

Technologies (FAST’13), San Jose, CA, 2013.

[38] E.Y . Chang, H. Bai, and K. Zhu. “Parallel algorithms

for mining large scale rich-media data”, In the

Proceedings of the 17th ACM International

Conference on Multimedia (MM’09), NY, USA, , pp.

917-918, 2009.

[39] X. Wu, and X. Zhang. “Synthesizing High-Frequency

Rules from Different Data Sources”, IEEE

Transactions on Knowledge and Data Engineering,

vol.15, no.2, pp.353-367.

[40] T. Cheng, and K. Taura. “A Comparative Study of

Data Processing Approaches for Text Processing

Workflows”, In the Proceedings of High Performance

Computing Networking Storage and Analysis, IEEE

Computer Society Washington, DC, USA, pp.

1260-1267.

Author Biographies

 Mrs. Sandhya N is Researcher in Information

Technology Division, School of Engineering, Cochin

University of Science & Technology (CUSAT). She holds

a Master Degree (M.Tech) in Computational Engineering

and Networking from Amrita Viswa Vidya Peetham

(2009-2011). She has 5years of experience in Research &

development in IT Company. She has published a paper on

2012 7th International Conference on Computer Science

and Education (ICCSE). Her research interest includes Big

Data Analytics, Testing and Analysis, Object Oriented

Programming.

 Dr. Philip Samuel is Reader in Information Technology

Division, School of Engineering, Cochin University of

Science & Technology (CUSAT). He holds M.Tech in

Computer & Information Science from Cochin University

of Science & Technology and Ph.D degree in Computer

Science & Engineering from IIT Kharagpur. He has more

than 17 years of experience in teaching and research as a

faculty at Cochin University of Science & Technology. He

has published more than 35 research papers in

International Conferences and Journals. His research

interest includes Big Data Analytics, Distributed

Computing and Automated Software Engineering.

Mariamma Chacko was born in 1961 at

Changanacherry, India. She received her Bachelor’s

degree in Electrical Engineering from University of

Kerala in 1985, Master’s degree in Electronics from

Cochin University of Science and Technology in 1987

and PhD in Computer Engineering from Cochin

University of Science and Technology in 2012. She has

been working as Associate Professor in the Department of

Ship Technology at Cochin University of Science and

Technology since 2006. She has 12 research publications

to her credit. Her research interests include validation and

optimization of embedded software, and sensorless control

of BLDC motors .

