
Journal of Network and Innovative Computing

ISSN 2160-2174 Volume 5 (2017) pp. 020-024

© MIR Labs, www.mirlabs.net/jnic/index.html

Dynamic Publishers, Inc., USA

From Monolith to Microservice Architecture
PoojaParnami1, AmanJain2, Navneet Sharma3

1CS & IT Department, IIS University

Gurukul Marg, SFS, Mansarovar, , Jaipur, India

pooja.parnami@yahoo.com

2CS Department Maharishi Arvind Institute of Science and Management

Ambabari Circle, Ambabari, Jaipur, India

amanjain.jpr@gmail.com

3CS & IT Department, IIS University

Gurukul Marg, SFS, Mansarovar, , Jaipur, India

navneet.sharma@iisuniv.ac.in

Abstract: Invention of cloud change the complete scenario of

IT world. With the help of cloud, the developers can access

infrastructure ubiquitously, cheaply and can scale up infinitely.

The demand of modern business is agility and high availability,

this results in the rise of micro-service based application. With

the help of microservice platform, developers can create

applications of properties like: scalable, independent lifecycle

management high performance, high availability, cost effective

and can run across public clouds and private clouds.

Microservices are an application revolution powered by the

cloud. This paper explains the journey from monolith to

microservice based architecture, with the benefits and limitations

of each architecture style.

Keywords: Monolith, Component based, Layered, Object

Oriented, Service Oriented, Microservice based Architecture,

Cloud Computing

I. Introduction

A monolith application is generally considered as a single unit.

Generally enterprise applications are built in three parts : A

client site user interface, a database and a server side

application. The client side user interface is used for user

interaction, the database is for data storage and server side

application will handle the request sent by user, execute

domain logic, retrieve or update data from the database and

send back results to the user. This sever side application is

monolith. To handle a request the logic is created in the form

of a process. If any changes are required, we need to create a

new server-side application. In case of horizontal scaling many

instances of monolith application can run behind the load

balancer but scaling of parts of application require greater

amount of resources. Monolith applications are successful but

as more applications are deployed on cloud it creates

frustration among people. The reason behind this is tight

coupling. If a small change is required in a part of application,

it leads to rebuild and deploy of entire application. These

frustrations have led to the microservice architectural style i.e.

building applications as collection of services. Service is a

module with a firm boundary, which could be written in

different programming language, independently deployable

and scalable. Each service could be managed by a different

team. The IT industry travelled from the era of monolith to

microservice to achieve different pinnacles of software

development. This paper describes the complete journey from

a monolith generation to microservice era.

II. Monolith Architecture

A monolith application can be viewed as a single-tiered

software application in which the user interface and data

access code are combined into a single program. Monolith

application is non-modular, self-contained and independent in

nature.

A. Advantages:

1. Simple to develop and deploy: Currently available all

IDE tools supports Monolith development.

2. Simple to scale - multiple copies of the application

can run behind a load balancer

3. Easy to implement

4. Easy to optimize performance.

5. No Context switching or compatibility issues.

6. Less development and management cost.

B. Disadvantages: Generally an application becomes large

over time and the team size grows, the monolith designing

approach starts showing significant drawbacks.

1. A large monolithic application is difficult to

understand and modify, therefore development

process slows down.

2. Continuous deployment is difficult –Update of one

process or component result in redeploy of complete

application.

3. Monolith architecture does not supports remote or

distributed access of data resources.

4. Maintenance of Monolithic code is high in cost.

5. The cost of central mainframe used for running

monolith applications is high.

mailto:amanjain.jpr@gmail.com
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/User_interface

From Monolith to Microservice Architecture 21

III. Client Server Architecture or 2 Tier

Architecture

The two tiers of Client Server Architecture are a Graphical

User Interface (GUI) application and a Database Server. The

business logic is stored in the database in the form of stored

procedure. The GUI application sends request to the database

which returns the result in the form of different views. The

example of client/server architecture is any web browser based

application running on internet / intranet [1].

A. Advantages:

1. Simple to deploy.

2. Higher security: All data is stored on the server, this

enforce security.

3. Centralized Database :The data is stored in

centralized manner, this results in ease of access and

update of data.

4. High Performance: There are only two layers,

database server and business logic, which enhance

performance of the application.

B. Disadvantages:

1. The business logic is stored in the database, therefore

this architecture is not suitable for applications with

rapidly changing business rules

2. Less reliable, because of total dependency on central

server.

3. Scalability: Supports less number of users[2].

4. Modification overhead: To apply any changes in an

application, it should be redeployed on all clients,

this increases extensive administrative overhead. [2]

IV. Component Based Architecture

A component could be defined as a exchangeable software

unit with clearly defined interface. A component encapsulate

related functions and has a clearly define interface.

Component-based architecture focuses on the decomposition

of the design into individual functional or logical components.

Each component can communicate through methods, events,

and properties. The main property of a component is

abstraction i.e. each component hides its implementation and it

is modular in nature. A component is easily extendable. Not

much modifications is needed to make changes in the internal

code or design of a component[3].

Components interaction could take place in the form of

message passing, method invocations, asynchronous calls,

broadcasting, data stream communications, and other protocol

specific interactions. In short the component based

architecture provides an infrastructure which uses mechanism

like persistence, message-exchange, security and versioning.

The examples of component platforms provided by different

manufacturers are DCOM, JavaBeans, Enterprise Java Beans

and CORBA.

A. Advantages:

1. Ease of deployment – A new version of component

can easily replace the previous version, without

affecting other components and the system as a

whole.

B. Disadvantages:[4]

1. Increase in time and effort required for development

of a component: Components are build for reuse. A

reusable unit requires 4 to 5 times of time and effort

as compare to other software unit.

2. Unclear and ambiguous requirement:-. A reusable

component by definition, to be used in different

applications. Most of the requirements may yet be

unknown and cannot be predicted.

3. High maintenance costs:- maintenance costs of a

component can be very high since the component

must respond to the different requirements, different

applications, different environments and different

reliability requirements.

4. Difficult to find : Finding a suitable components

which fit the architectural design of the software, may

be difficult because of gaps between the software

requirements and component’s features.

V. N-Tier / 3-Tier Architectural Style

N-tier and 3-tier architecture divided into layers and each layer

is a separate tier, could be located on a physically separate

computer. In N-tier application architecture the functionality

of the application is decomposed in the form of service

components, deployed in distributed way. This distributed

property increases scalability, availability, manageability and

resource utilization. Each layer is completely independent

from other layers, except for those immediately above and

below it. Communication between tiers is typically

asynchronous.

N-tier application generally refers to 3 or more tiered

application, but 3-tier architecture is most common. A 3-tier

application divided into three layers: presentation layer,

business rules layer and data layer. The presentation layer

contains the user interface of the application. It does not make

any application decisions. Business rule layer contains the

application logic and also stores and retrieve data from the

data layer. The data layer stores data and also provides

security, transaction management and data mining facilities.

A. Advantages:

1. Improved Scalability: Due to the distributed nature,

scalability of the system increases[5]

2. Enhanced Re-usage: A similar logic can be sustained

in many clients or applications. In appliance of object

standards like COM/DCOM or CORBA, the

language in the business-logic tier can be made

transparent.[5]

3. Improved Data Integrity and Security: The client

cannot directly interact with the database, the middle

tier between User interface layer and database layer

ensures data validations. The placement of the

business logic on a centralized server improves the

security of the data [6]

4. Reduced Distribution: In the case of modification in

business logic, due to layered architecture updations

are required to be done only at the application servers,

not all distributed clients[6]

5. Reliability :It is possible to recover the system from

network or server failures, due to availability of

redundant servers.[6]

 Parnami, Jain, Sharma 22

6. Database transparency :The schema design of the

database remains hidden from users, which enables

any change of the database to be transparent. [6]

7. n tier architecture is extension of 3-teir model,

therefore includes all the advantages of 3-tier model.

But the performance increases due to off-load from

the database tier[5]

B. Disadvantages

1. Complexity of Communication: Due to presence of

more layers, the communication become complex

between client and server [5].

2. Fewer Tools: In comparison of 2-tier model, less

automation tools are available in 3-tier model[5]

3. Componentization into tiers, makes the structure

complex, which is difficult to implement and

maintain[6].

VI. Object-Oriented Architectural Style

Object Oriented Architecture is an important concept for

developing the software. It is a design model based on dividing

the responsibilities for an application or system into reusable

and self-contained objects. Object oriented is based on

modelling real-world objects. Each object encapsulates data

and functionality relevant to itself. Each object is a discrete,

reusable, loosely coupled unit. These units communicate

through message passing, interfaces, calling methods or

accessing properties of other object.

A. Advantages:

1. Understandable. Maps the application to the real

world objects.

2. Reusable. Provides reusability through

polymorphism and abstraction.

3. Testable. Provides testability through encapsulation.

4. Extensible. Encapsulation, polymorphism, and

abstraction ensures data independence.

5. Highly Cohesive. The encapsulation helps in keep

only related methods and features in an object, and

creating different objects for different sets of features,

this results in high level of cohesion.

6. Robustness: The errors could be managed during

execution.

B. Disadvantages:

1. Not all problems could be broke-down in classes and

objects.

2. Due to inheritance, the superclass and subclasses

imposes strong coupling.

3. Not the a good choice for small and complex

projects.

VII. Service-Oriented Architectural Style

The principle of service-oriented architecture is to build real

world distributed application. It is not a technology but set of

architectural principles. The service-oriented architecture

design the functionality of a software with services. A service

is a self-contained, loosely coupled and un-associated unit. In

Service-oriented architecture (SOA) application functionality

is provided as a set of services, and the application is crated

with the help of software services.

In SOA style business processes are packaged into

interoperable services. These services implement variety of

protocols and data formats to communicate information.

A. Advantages[7],[8]:

1. In comparison to large applications services provides

free flow of information between and within

enterprises.

2. Increase in business agility due to seamless

connectivity of applications and interoperability.

3. Alignment of IT around the needs of the business –

Service based software is easy to change according to

the need of business.

4. Using existing software modules help in reduction of

cost, development time and time to market

5. The conversion of data from one format to other is

achieved through automated filed mapping.

6. Data confidentiality and integrity achieved through

encryption.

7. Parallel and independent applications development –

Due to the reuse of services it is possible to develop

parallel and independent applications.

8. Reduced vendor lock-in

9. Ability to develop new function combinations with

the help and reuse of existing functions.

10. Reuse of existing assets.

11. Smooth migration from old architecture to new one.

12. Virtualization helps in scaling.

B. Disadvantages:

Following are the downsides of SOA[9],[10]:

1. Each time when a service invokes other services,

every input validation is required. This increases the

machine load and response time. Resultantly,

reduction in overall performance of the system.

2. Services work on message passing mechanism. Every

message must be acknowledged. Therefore

sometimes the number of messages can reach up to a

million. It is a challenge to manage huge population

of services.

3. The implementation cost in terms of technology,

development and human resource is quite high.

4. SOA is not suitable for following type of

applications:

a. Standalone

b. Short lived

c. Applications with asynchronous

communication

d. Homogeneous

e. Applications with GUI based functionality

VIII. MicroService

In Microservice architecture, an application is developed with

a collection of small services called microservice. Each

microservice has its own light weight process and

communicate through a well-defined Interface[11].

A Microservice is:

A. Independent

1. Autonomous in implementing a minimal unit of

work,

From Monolith to Microservice Architecture 23

2. Autonomous in persisting its data,

3. Autonomous in its implementing programming

language,

4. Autonomous in its deploy.

B. Integrated

1. Communicate with other services exchanging

messages over the network,

2. Its work (and so implemented functionality) may

depend on one or more other services.

C. Lightweight

1. Its process has not a relatively big footprint.

D. Minimal

1. normally a single service does not provide a

considerable complex functionality, to get that

various services have to be orchestrated.

E. Pipeline-ready

1. Naturally a Microservice is designed to be plugged

into a processing Pipeline.

F. Stateless

1. Its request processing does not depend for the history

of the previous requests.

G. Independent

IX. Characteristics of Microservice:

A. Easily deployable[11] : In microservice architecture,

the application is divided into services. But is any changes

are made in a service, we need not to deploy the complete

application, only modified service need to be redeployed.

B. Organized around Business Capabilities[11] : Before

microservice, to divide the application into parts, the method

opted was to divide it into layers. The microservice divide

the application into services and each service organized

around business capability, resulting the teams are

cross-functional.

C. Independent code base[12]: Each service has its own

software repository. The small size of code makes it fast in

development, testing and refactoring. Startup time is very

low and dependency among code is negligible.

D. Independent Technology Stack[12] : Each service can

be made on different technology stack based on their specific

requirements. It means there is no system-wise standardized

technology stack, in which your code need to fit in.

E. Independent Scalability [12]: Each service can identify

the bottlenecks and scale accordingly and if not required

could be made non-scalable.

F. Stable interfaces[12] : Communication between services

is standardized, using HTTP(S) , REST , JSON.

G. Decentralized Data Management[11] : In monolithic

applications there is a single logical database for persistent

data. In Microservice architecture each service manages its

own database

X. Limitations of Microservice[13]:

A. Developers must deal with the additional complexity of

creating a distributed system.

B. Deployment complexity. The independence of services

increases the complexity of deployment.

C. Handling multiple database and transaction

management is a challenging job.

D. Testing and deployment of microservice based

application is cumbersome. It needs to test a deploy

each microservice as compare to single WAR file.

E. Developers need to create a mechanism for

inter-service communication

F. Implementing use cases that span multiple services

across teams, is difficult.

G. Absence of knowledgebase.

H. Not sufficient developer tools/IDEs are available for

developing distributed applications.

XI. Conclusion

Microservice is not a final and ubiquitous solution, but is a

dominant approach for developing light weight services,

delivered on web or mobile devices. In the era of cloud

computing and agile development, the first need is scalability.

With the help of microservices horizontal scaling could be

achieved at run time. The transition from a traditional layered

architecture to a cloud-based software, the microservice based

approach can offer significant benefits for organizations. The

microservices architecture enables companies to be much

more agile and cut costs at the same time. The industry

specialists suggest the IT companies and developers for smart

use of microservice with an understanding of benefits and

pitfalls.

References

[1] J. Fong , R. Hui “Application of middleware in the three

tier client/server database design methodology” Journal

of the Brazilian Computer Society, 6(1), pp.50-64, 1999

[2] Thota, “ Advantages and disadvantages of 2-Tier

Architecture” http://www.dotnetspider.com/forum/

32148-advantages-disadvantages-two-tier-architec.aspx.

Accessed 21 December 2017

[3] M. Panunzio, T. Vardanega “A component model for

on-board software applications”. In Proceedings of the

36th Euromicro Conference on Software Engineering

and Advanced Applications, IEEE Computer Society, pp.

57–64, 2010

[4] I. Verma "W model of component based software

development." International Journal of Advanced

Studies in Computers, Science and Engineering, 3(7)

pp37,2014

[5] Sarma “3-Tier Architecture

“ http://www.dotnetspider.com/forum/32148-advantage

s-disadvantages-two-tier-architec.aspx. Accessed 21

December 2017

[6] Woodger Computing Inc. (2010) Multi-Tier

Architectures. http://www.woodger.ca/archmult.html.

Accessed 21 December 2017

[7] B. Johnson(2003)The benefits of service oriented

architecture. http:// objectsharp.com/ cs/ blogs/ bruce/

pages/ 235.aspx. Accessed 21 December 2017

http://www.dotnetspider.com/forum/%2032148-advantages-disadvantages-two-tier-architec.aspx
http://www.dotnetspider.com/forum/%2032148-advantages-disadvantages-two-tier-architec.aspx
http://www.dotnetspider.com/forum/32148-advantages-disadvantages-two-tier-architec.aspx
http://www.dotnetspider.com/forum/32148-advantages-disadvantages-two-tier-architec.aspx
http://www.woodger.ca/archmult.html

 Parnami, Jain, Sharma 24

[8] Z. Mahmood “The promise and limitations of service

oriented architecture” International journal of

Computers. 1(3) pp.74-78, 2007

[9] G. Hohpe “Developing Software in a Service-Oriented

World”. In BTW , pp 476-484, 2005

[10] D Overall, Have we been there before, Opinions,

Computer Weekly, UK., 2006

[11] M. Fowler Microservices https://martinfowler.com/

articles/microservices.html. Accessed 21 December

2017

[12] A. Schroeder (2014) Microservice Architectures

https://www.pst.ifi.lmu.de/Lehre/wise-14-15/mse/micro

service-architectures.pdf. Accessed 21 October 2017

[13] C. Richardson (2016) Microservice Architecture

http://microservices.io/patterns/microservices.html.

Accessed 21 December 2017

Author Biographies

Pooja Parnami is an assistant professor in Amity

University, Rajasthan. She is working as a research

scholar at IIS University, Jaipur, India. Her main

research area is cloud computing with strong focus

on cloud migration. She has published a book on

database management system. She severed in

various institutes and software industries as a

faculty, developer and researcher.

Aman Jain is a Professor in Maharishi Arvind

Institute of Science and Management, Jaipur, India.

He completed his PhD from University of

Rajasthan. His main research areas are in

Databases, ERP and Network with a strong focus

on Securities. He served various institutes and

guided numerous scholars in their research and

projects

Navneet Sharma completed his PhD degree in

Computer Science from Suresh GyanVihar

University, Jaipur, India. His general research

interests are Banking, E Commerce and ATM

Securities. He has published extensively in areas of

Banking and Securities. He was awarded with

Bright Researcher Award from NITTR Chandigarh

and received various other awards in the field of

research and teaching

https://martinfowler.com/%20articles/microservices.html
https://martinfowler.com/%20articles/microservices.html
https://www.pst.ifi.lmu.de/Lehre/wise-14-15/mse/microservice-architectures.pdf
https://www.pst.ifi.lmu.de/Lehre/wise-14-15/mse/microservice-architectures.pdf
http://microservices.io/patterns/microservices.html

