
Journal of Network and Innovative Computing

ISSN 2160-2174 Volume 5 (2017) pp. 025-032

© MIR Labs, www.mirlabs.net/jnic/index.html

Machine Intelligence Research Labs (MIR Labs), USA

Inter-Operability In Incompatible Access

Control Models

Kanthi Kiran Bhargav P.V

Amity School of Engineering and Technology,

Noida, Uttar Pradesh.

arjhnpr@gmail.com

Deepti Mehrotra

Amity School of Engineering and Technology,

Noida, Uttar Pradesh.

dmehrotra@amity.edu

Abstract--Sharing of resources across an interoperable environment has it’s own fair share of pros and cons.
The sharing of resources or data in an interoperable environment enhances the quality of services and the
productivity among the organizations. The pros of an interoperable environment are mitigated by it’s cons.
The resources and data of the organisations are under constant threat of being accessed beyond the
authorization privileges specified to them. In an intra-operable environment, these threats of accessing beyond
the privileges specified are nullified by defining Security Policies (SP) and implementing these defined Security
Policies (SP) through Access Control Models. In an inter-operable environment, defining Security Policies (SP)
for the whole environment can be a tedious and a complex task. This approach makes the system a rigid one
and performs poorly while handling a large number of users/entities i.e it is not scalable. This approach will be
more complex when both the organisations employ incompatible Access Control Models. A more effective
approach would be to design a system which is efficient enough to make the Access Control Models in the
environment compatible with each other. This can be achieved by designing a system which can dynamically
generate Access Control Policies (ACPs) for a specific Access Control Model, which are compatible with the
remaining Access Control Models in the environment. In this paper we focus on the inter-operability of two
such models - Attribute Based Access Control Model (ABAC) and Role Based Access Control Model (RBAC).

Keywords: Role Based Access Control Model, Attribute Based Access Control Model, eXtensible Access Control

Markup Language, Policy Segregator,Policy Generator

I.INTRODUCTION

The hierarchical distribution of authority privileges
among the entities of an organisation tends to get complex
with the growth of the organization over time. The Access
Control Models (ACMs) are employed in order to ease the
process of distribution of authority privileges among the
various entities of the organisation. The strategies for these
distribution of authority privileges among the entities of the
organization evolved from the rigid approach of manually
assigning the privileges to the Users (ACLs) as defined in [1]
to the dynamic approach of deducing the extent of
privileges based on the attributes assigned to the users and
resources [2]. Though there has been progress in the intra-
operable environment, the arena of inter-operable
environment is still unexplored.

The organizations spend a huge amount of time and
monetary resources for the sole purpose of securing their
resources and data. The Access Control Models (ACM)
defined for the intra-operable environment makes sure that
the data and resources of the organization are secure by
restricting the access privileges to the entities based on their
ranks and levels. In a scenario of inter-organizational
sharing of resources, there may arise a situation where
incompatible Access Control Models are employed; due to
the lack of proper framework or a system present for inter-
operable environment, the resources and the data of the
organisations are at risk of being accessed beyond the extent
of sharing agreed to by the organisations. In this paper, the
study is being conducted on the inter-operability among the
incompatible models which are defined using the same
XACML framework employed in [3] [4]. A case study is

considered, where two organizations implement two
different Access Control Models – where one implements
the Role Based Access Control Model and the other
implements the Attribute Based Access Control Models.

This paper is organized as follows: Section 2 provides a
background study of the Access Control Models, Access
Control Models employed and the XACML framework
employed in this paper. The Section 3 proposes a model for
making the Role Based Access Control Models (RBAC)
compatible with the Attribute Based Access Control Models
(ABAC). The Section 4 implements the model proposed
mentioned in the Section 3 of the paper. The Section 5
consists of the issues which are existent in this system and
which can be rectified in the future. This is followed by
Conclusion and Result in Section 6 and the Future work in
Section 7.

II.BACKGROUND STUDY

Access Control Models (ACM) are models which are
used to define the distribution of authorization privileges
among various entities in the organisation. The main
component of Access Control Models is represented by it’s
security policies that regulate the access to data and
resources as cited in [17]. The Security Policies of the
Access Control Systems in turn consists of Policy Sets
which are constituted by a set of Policy Rules. The
administrator is responsible for framing these security
policies, keeping in mind the need for access control among
the entities [5].

An access request can be defined below (1),

S,A,R,(condition)→ auth.(User, Action,Request)

mailto:dmehrotra@amity.edu

Kanthi and Deepti 26

(S ԑ Subject Set, A ԑ Activity Set, R ԑ Resource)
 (1)

Whenever a user (subject) submits a request to access
the resources i.e the access request, the Authorization
System compares the access request with the security
policies defined in the system. If the result turns out to be a
positive one, then the user is authorized to access the
resource/data entity or else the authorization is declined.
This is depicted in the figure 1 below,

Fig 1. An overview of ACM

This is the general approach employed by various Access
Control Models

A. Role Based Access Control Model (RBAC) [7]

Role Based Access Control Model classifies the user
into groups called roles, which in turn are allotted
permissions, unlike the other Access Control Models where
the permissions are assigned to the user. This approach of
assigning the permissions to the groups instead of users,
tends to make the system more flexible, where a new user
can be assigned permissions without any hassles. The basic
components of a Role Based Access Control Model are:

1) Users (U): The users are the subjects of this Access

Control Model. The user can be a monotonic user like a

human being or an automated system. The user is in turn

allotted to one or many roles.

2) Roles (R): The role is a group which are assigned the

necessary permissions required to fulfil the responsibilities

of the role. The roles and permission have a one-to-many

relationship among them.

3) Permissions (P): The permissions are positive

authorizations to access a resource/data entity. The

negative authorizations aren’t defined under the

permissions set, they are implemented through

constraints[12].
4) Sessions (S): The sessions are used to keep track of

the activity of the subject. A session is initiated whenever a
role set is activated by the user. A user can have multiple
sessions at a single point of time.

B. Attribute Based Access Control Model (ABAC) [8]

The Attribute Based Access Control Model (ABAC)
implements the Subject (SA), Resources (RA) and
Permissions (Actions) through attributes. This
implementation of the basic components of an Access
Control Models (ACM) through attributes coupled with

Environment Attributes (E.A) tends to make the model
more dynamic. The basic components of an Attribute Based
Access Control Model are:

1) Attributes: The attributes are the variables which
define a resource or a subject. The attributes can
vary from being a set of distinct and non-linear
values to a set of a range of values. The attributes in
Attribute Based Access Control Model (ABAC) can
be classified as Environmental Attributes, Subject
Attributes and Resource Attributes.

2) Actions: The Actions are used by the user to
access/change a resource. The various actions
which are available for a user of the highest level
are read, write, append and delete.

3) Policy Set: The Policy Set is a combination of
Policies and Policy set. The Policy Combining
Algorithms (PCA) are implemented in a policy set
to deduce a result out of two conflicting results.
While on the lower level, the Rule Combining
Algorithms (RCA) are implemented to deduce a
result out of two conflicting rules, which in
collection make up policies.

C. Extensible Access Control Markup Language (XACML)

The Extensible Access Control Markup Language is an
OASIS standard which is used to define security policies as
cited in [3]. It is an extension of the Extensible Markup
Language (XML), but with a pre-defined schema to define
the attributes and rules.

XACML provides features which support a wide variety
of Policies. It provides standardized syntax for requesting
an action from a system. The Actions can classified into the
following types [16]:

1) Permit – This permits the system/user to perform an
action i.e positive outcome.

2) Deny – This denies the system to perform an action
i.e negative outcome.

3) Intermediate – This is raised when an error or an
incorrect values prevents the action from taking
place.

4) Not Applicable – This is raised when the request
can’t be processed.

 A basic Access Request can be implemented using the
following attributes and tags:

1) Subject: The <Subject></Subject> tag can be used
to define the subject along with it’s attributes.

2) Resource: The <Resource></Resource> tag can
used to define the resource and it’s attributes.

3) Action: The <Action></Action> tag can be used to
define the type of action.

Inter-Operability In Incompatible Access Control Models 27

D. Implementation of Security Policies in RBAC [3]

The Role Based Access Control Model (RBAC) is
implemented using XACML. A complex approach is
employed while the framing Security Policies of Role
Based Access Control Model (RBAC). The various types of
Policy Sets employed while defining RBAC security
policies are:

1) Role Policy Set (RPS): The Role Policy Set defines
the various users/subject associated with the role.
The Role Policy Set holds the attribute values of
the roles. It contains the reference to it’s respective
Permission Policy Set. The RPS is a subset of the
sets of User and Roles.

2) Permission Policy Set (PPS): The Permission
Policy Set defines the various permissions
associated with the role. The PPS is a subset of the
Permissions set.

3) Separation of Duties Policy Set (SDPS): The
Separation of Duties policy set is used in
preventing a user having conflicting roles from
accessing a resource. The constraints are defined in
this policy set.

4) Role Assignment Set (RAS): The Role Assignment
Set is a mitigation approach to the Separation of
Duties Policy Set, which prevents the
administrator from assigning conflicting roles to
the user.

E. Implementation of Security Policies in ABAC [4]

The XACML is the most perfect fit for defining the
security policies of the Attribute Based Access Control
Model (ABAC). The various attributes in Attribute Based
Access Control Model are:

1) Subject Attributes (SA): The Subject attributes are
used to define the attributes of the user/subject.

2) Resource Attributes (RA): The Resource Attributes
are used to define the attribute of the user/subject.

3) Environmental Attributes (EA): The Environmental
Attributes are what make the ABAC system
dynamic, they can be used to define the extent of
authority based on the environment i.e time, place
or situation.

The Subject set in an ABAC model comprises of the
sets of Subject Attributes and Environmental Attributes,
while the action is defined by the user/subject which
belongs to the activity set.

III.PROPOSED THEORY

The Attribute Based Access Control and Role Based
Access Control Models may vary in their approach while
defining their respective Security Policies, but they both
tend to follow the basics of implementing an Access
Control Model. The models might have different
approaches, like every other Access Control Model, they
tend to use a similar approach for authorization i.e Access
Request (AR).

The Role Based Access Control Models differ from the
common Access Control Models as they don’t share a
common ancestor as cited in [14]. This can be mitigated by
combining all the Policy Sets defined for a Subject or a role.

A paper states that “RBAC defines roles between users
and permissions, ABAC defines attributes that can be
required or forbidden in order to give users access to
resources” [15].

The Attribute Based Access Control Model has a single
Policy Set to define it’s Security Policy while the Role
Based Access Control Model tends to employ three policy
sets for defining it’s Security Policy. This is depicted in the
following figure 2 below,

Fig 2. Mapping of RBAC with it’s implementation

The Role Based Access Control Model’s Policy Sets
aren’t compatible with that of the Attribute Based Access
Control Model. Unlike those of ABAC, the Policy Sets
don’t necessarily define a single subject. The Role
Assignment Set (RAS) can consists of more than one
Subject assigned to a single role. The Permission Policy Set
(PPS) can consists of more than one permissions defined for
accessing the resources associated with the Role Based
Access Control Models. This multiple declaration of
subjects or permissions associated with the resources can
render the Policy Set incompatible with the Policy Sets of
the Attribute Based Access Control Models (ABAC)

The Proposed Model would be to define a system which
maps the Subjects to the Roles and in turn maps the Roles to
the Resources. The Subjects, the Resources and the
Permissions (actions) from the various Policy Sets are
grouped to form Rules Set for the ABAC Policies. The
occurrence of multiple Subjects or multiple resources and
their associated actions are handled by mapping the
Subjects, Permissions and Resources repetitively i.e
different set of rules are framed for the different Subjects of
the RAS Policy Set.

The mapping of the Subjects, Resources and
Permissions can be achieved by interpreting the information
about the Subjects or Resources or Permissions from the

Kanthi and Deepti 28

respective Policy Sets. The interpreted information has to be
used in reframing new rules and which in turn make up a
new Policy Set. The major challenge with this approach is
maintaining the XACML Schema in the new Policy Set.
This can be mitigated to an extent by manually defining the
schema for the new Policy Sets.

The proposed system consists of two phases – the
necessary information is interpreted in the first phase while
a new Policy Set is framed out of the interpreted
information in the second phase. The Proposed model
would consists of two modules – a Policy Segregator and a
Policy Generator, one for each phase. The Policy Segregator
would interpret the necessary information by parsing the
XACML Policy Sets, while the Policy Generator would
generated a Policy Set out of the Parsed data. This is
depicted in the figure 3 below,

Fig 3. The Proposed Model

 In Simple terms, the Proposed Model would
amalgamate the necessary information obtained from the
various Policy Sets- Role Assignment Set, Separation of
Duties Policy Set and Permission Policy Set into a resultant
Policy Set which is compatible with the ABAC Policy Sets.
This is depicted in the figure 4 below.

Fig 4. Generalized Approach of the Proposed Model

IV.IMPLEMENTATION

The system proposed consists of two modules- Policy
Segregator and Policy Generator. This division of the
system into two modules rather than one module reduces

the complexity of the system. The division of the system
into two modules makes the effective reuse and
minimization of code. These modules can be implemented
using a Python script. The main objective of these modules
is to parse the Access Control Policies, extract the necessary
information out of the Access Control Policies and generate
a new Access Control Policy which would be in compatible
with the other model in the environment. The Python Script
utilizes a XML parser – an Element Tree XML API or a
Document Object Model (DOM) API to parse the XACML
policies to generate the information or create new XACML
policies.

The two models which are employed in this paper are –
Role Based Access Control Model and Attribute Based
Access. The next step would be choosing the model which
would serve as an input for the system. The Role Based
Access Control Model is the one which is preferred as it is
an outdated model compared to the Attribute Based Access
Control Model (ABAC). The main challenge with Role
Based Access Control Model (RBAC) is that there’s always
a stronger connection between strong security and easier
administration [16].The security and the administration
have an inverse relation, thus striking a balance between
both is a complicated issue. The Attribute Based Access
Control Model (ABAC) is more granular and more flexible.
The major con which outweighs the Role Based Access
Control Models (RBAC) is that the Attribute Based Access
Control Model (ABAC) is a more dynamic model.

The two modules proposed for the system are:

1) Policy Segregator: The main objective of this
Module is to parse the XACML Policy, extract the
necessary information from the Policy Sets. This
module parses four Policy Sets- Permission Policy
Set, Role Policy Set, Role Assignment Set and
Separation of Duties Set. The information extracted
in this module is store in variables and passed onto
the next module. The Flow of control of this
module is depicted in the Figure 5.

2) Policy Generator: The main objective of this
module is to create a new Policy Set which is
compatible with the Attribute Based Access Control
Model (ABAC). The information passed on to by
the Policy Segregator Module is collected and
Policy Sets are framed out of the passed on
parameters. An XACML schema is pre-defined in
this module, which is employed while defining the
new Policy Set. The Flow of control for this module
is depicted in the figure 6.

Inter-Operability In Incompatible Access Control Models 29

Fig 5. Flow of Control for Segregation of Attributes

Fig 6. Flow of Control for Generation of Policy

Kanthi and Deepti 30

The first module of the proposed system is the
Policy Segregation module. The algorithm for the
process of Policy Segregation is defined below. The
Policy Sets defined for the RBAC model serve as
inputs for this algorithm.

1) Open the Role Assignment Set (RPS) from

the list of policy sets.

2) Parse the Role Assignment Set, until the

cursor comes across the Subject Tag. Store

the Attribute Value of the Subject field into

a variable

Subject = Attribute Value of the Subject

Tag.

3) Parse the Role Assignment Set, until the

cursor comes across the Resource Tag.

Store the Attribute Value of the Associated

Role field into a variable

Role = Attribute Value of the associated

Role Tag

4) Parse the Policy Set, when you come across

the Action tag, store the Attribute Value of

the Action tag into a variable.

Effect = Attribute Value of the Action Tag

5) Close the Role Assignment Set, once the

parsing of the Policy Set is done.

6) Open the Role Policy Set from the list of

Policy Sets

7) Parse the Policy Set, when you come across

the PPS tag, store the Attribute Value of the

PPS tag into a variable. The PPS name is

essential as it links the Permission Policy

Set with it’s Role Policy Set.

PPS_Name = The name of the associated

Permission Policy Set (PPS)

8) Close the Role Policy Set (PPS), once the

Subject, Role and PPS tag values are stored.

9) Open the Permission Policy Set. The

Permission Policy Set name will be store in

the PPS_Name variable

10) Parse the Permission Policy Set, when the

cursor comes across Role Tag, store the

attribute value into a variable.

Role_PPS = Role associated with the

Permission Policy Set (PPS)

11) Parse the Permission Policy Set for the

Policy Combination Algorithm and store

it’s value.

PCA= The Policy Combination Algorithm

employed

12) Parse the Permission Policy Set for the

Rule Combination Algorithm and store it’s

value.

RCA= The Rule Combining Algorithm

employed

13) Parse the Permission Policy Set for the

Action assigned to the Role and store it’s

value.

Action = Value of the Action associated

with the Permission Policy Set (PPS)

14) Parse the Permission Policy Set for the

Resource which the role has to perform it’s

responsibilities and store it’s value.

Resource = Value of the Resource

associated with the Role Policy Set (RPS)

15) Close the Permission Policy Set, once the

Parsing is completed.

16) If the Seperation of Duties Policy Set is

defined for the role then,

16.1) Open the Seperation of Duties Policy

Set, this Policy Set contains the

constraints associated with the

user/subject

16.2) While parsing the Seperation of

Duties Policy Set, the Subject defined

in the Policy Set needs to be stored.

Subject_SDP = Attribute Value of the

Subject Tag

16.3) While parsing further, the role which

the user is forbidden from being

assigned needs to be stored.

Role_SDP = Attribute Value of the

Role Tag

16.4) Close Seperation of Duties Policy Set

once the parsing of the Policy Set is

completed.

The second module of the proposed system is the
policy generation module. The input for this module
is the output parameters passed by the Policy
Segregation Module. The algorithm for the process
of Policy Generation is defined below,

1) Once the Policy Segregation Module is

completed, the Policy Generation Module

is called for.

2) The first step would be to pass the Subject

and Role variables obtained from the Policy

Segregation Module into a Combine

Function.

ABAC Subject Attributes =

Combine(Subject, Role)

3) The resource variable are used to generate

the Resource Attributes.

ABAC Resource Attributes = Resource

4) The Action variable is store in the ABAC

action.

ABAC Action = Action

5) The Effect is set to “Enable” or “Disable”

as obtained from the Role Assignment Set.

ABAC Effect = Effect

6) The Policy Combination Algorithm for the

compatible Policy Set is assigned the same

Policy Combination Algorithm of the

previous Access Control Model.

ABAC PCA = PCA

7) The Rule Combination Algorithm for the

compatible Policy Set is assigned the same

Rule Combination Algorithm of the

previous Access Control Model.

ABAC RCA = RCA

8) The Action variable for the Seperation of

Duties Policy Set is initialized to Null.

ABAC Action SDP = NULL

9) The Effect variable for the Seperation of

Duties Policy Set is initialized to Null.

ABAC Effect SDP= NULL

10) The next step would be to check whether

the Subject_SDP variable contains a Null

value or it contains a value. If the

Subject_SDP value is not equal to Null, the

system gets to know that the Subject has

constraints.

Inter-Operability In Incompatible Access Control Models 31

If Subject_SDP is present:

10.1) If the Role_SDP value is not equal to

the Role value , then

 If Role_SDP is not same as [Role]

10.2) The constraint Action is stored into a

variable.

 ABAC Action SDP = Action

10.3) The constraint Effect is set to Deny

 ABAC Effect SDP= “Deny”

11) The Output is generated by passing all the

arguments obtained into the

XACML_Combine function which

generates the Policy Set in an XACML

format.

Output = XACML Combine(ABAC Subject

Attributes, ABAC Resource Attributes,

ABAC Action, ABAC Effect, ABAC PCA,

ABAC RCA,ABAC Action SDP, ABAC

Effect SDP)

12) Write the Output returned by the XACML

Combine function into a New Security

Policy.

The following functions are defined in the Policy
Generator Module:

1) Combine(<Parameters>): The Combine
function is a user-defined function which
appends it’s parameters to a parent. The
parent in the Policy Generator Module is the
Subject. While implementing this function,
the Element Tree XML API [13] is used.

2) XACML Combine(<Parameters>): The
XACML Combine is a user defined function,
which appends all it’s parameters, along with
a predefined XACML schema to the root
node i.e the XACML Header. This function
also employs the Element Tree XML API[13]

V.DISCUSSION

The Approach presented in this paper was

successfully evaluated against the objective initially

defined. There are other relevant issues which need

to discussed, but don’t necessarily form the key

issues. These issues are:

1) Scalability: The System defined here is a

static system. Thus, it isn’t scalable. The

Future scope would be to design a dynamic

system which would be scalable.

2) Autonomic Computing: The System is fully

autonomic, it parses the XACML policies,

without the intervention of any user.

3) Portability: The System designed is

portable on any environment, if all it’s

dependencies are met.

4) Compatibility: The System designed her is

compatible with only two Access Control

Models. The Future Scope would be to

extend it to various other models.

VI.CONCLUSION AND RESULT

The Algorithm defined above is for the
interoperability of Role Based Access Control
Models and Attribute Based Access Control Models.
The proposed model can be implemented using a
XML parser and a python script which can be used to

define the Policy Segregator and the Policy
Generator.

A. Case Study

For a Case Study, we would take into
consideration, a subject name “Manager”. Manager
is assigned a role of a Manager, and he would have
four Policy Sets accordingly- Role Policy Set,
Permission Policy Set , Role Assignment Set and
Separation of Duties Set.

The First Step would be to parse the Role
Assignment Policy, which would produce the Subject
i.e Manager, Role i.e Manager and the Effect
=”Permit”

The Second Step would be to parse the Role
Policy Set, it would yield the Permission Policy Set’s
name.

The third step would be to parse the Permission
Policy Set, it would yield RCA=”Permit Override”,
PCA=”Deny Override”, Action=”sign” and
Resource=”Purchase Order”.

The fourth step would be to check whether a
Separation of Duties Policy Set is defined, as there is
no Separation of Duties Policy Set, it skips the step.

The Fifth Step, the Policy Generator Module
generates a new XACML file called result.xml is
created. The following is depicted in the figure 5
below

Fig 5. Sample Output

VII. FUTURE WORK

The need for sharing resources over a network is
of great importance for the Organizations, it paves
way for the possibility of effective outsourcing of
necessary resources. The future scope would be to
extend this framework to various other Access
Control Models and to design a system which would
be compatible with all the Access Control Models
present in the environment and would dynamically
generate the authorization outcomes based on the
access request generated employing the models as
stated in [9] [10][11].

REFERENCES

[1] Romauld Thion, “Access Control Models”, Chapter-
37, IGI Global Publication”, pp:1-4,2008

[2] RajaniKanthi Aluvalu, Lakshmi Muddana,”A dynamic

Attribute-Based Risk Aware Access Control Model

(DA-RAAC) for cloud computing”, IEEE

International Conference on Computational
Intelligence and Computing Research,2016

Kanthi and Deepti 32

[3] Anne Anderson, “XACML Profile for Role Based

Access Control”,OASIS Open, 2004

[4] Apurva Mohan, Douglas M.Blough, “An Attribute-

based Authorization policy Framework wth Dynamic

Conflict Resolution”, IDtrust’11, Gaithersburg, pp:
37-50, April,2010.

[5] Bill Fisher, Norm Brickman, Santos Jha, Sarah Weeks,

Ted Kolovos, Prescott Burden, “Attribute Based

Access Control”, NIST Special Publication,2016.

[6] Kamel Adi, Yacine Bouzida, Ikhlass Hattak, Luigi

Logrippo, and Sergie Mankovskii “Typing for Conflict
Detection in Access Control Policies”, 4th

International Conference, MCETECH 2009, pp : 212-

226.

[7] Ravi S.Sandhu, Edward J.Coyne ,” Role-Based Access

Control Models “, IEEE Volume:29 Issue:2, pp-38-47 ,
1996.

[8] Apurva Mohan, Douglas M.Blough, “An Attribute-

based Authorization policy Framework wth Dynamic

Conflict Resolution”, IDtrust’11, Gaithersburg, pp:

37-50, April,2010.

[9] Shalini Bhartiya, Deepti Mehrotra, “Threats and
Challenges to Security of Electronic Health Records”,

in Social Informatics and Telecommunications

Engineering 2014, LNICS, Volume 0115, ISBN: 978-
1- 936968-71- 8.

[10] Khaled Riad, Zhu Yan, Hongxin Hu, and Gail-Joon

Ahn, “AR-ABAC: A New Attribute Based Access

Control Model Supporting Attribute-Rules for Cloud

Computing”, IEEE Conference on Collaboration and
Internet Computing,2015

[11] Shalini Bhartiya, Deepti Mehrotra, Anup Girdhar,

“Proposing hierarchy-similarity based access control

framework: A multilevel Electronic Health Record
data sharing approach for interoperable environment”,

Journal of King Saud University - Computer and

Information Sciences, 2016

[12] David F.Ferraiolo , D.Richard Kuhn., “ Role Based

Access Controls”, 15th National Computer
Conference, Baltimore MD, pp. 554-563,1992.

[13] Element Tree XML API –

https://docs.python.org/2/library/xml.etree.elementtree

.html

[14] Lionel Montrieux,Michel Wermelinger, Yijun Yu,

“Challenges in Model-Based Evolution and Merging
of Access Control Policies”, Joint 12th International

Workshop on Principles on Software Evolution and

7th ERCIM Workshop on Software Evolution, 5-6 Sep
2011, Szeged, Hungary.

[15] Lionel Montrieux , “Model-Based Analysis of Role-

Based Access Control”, thesis submitted to The Open

University, May,2013.

[16] Vincent C.Hu, David F.Ferraiolo, D. Rick Kuhn,

“Assessment of Access Control Systems”, National
Institute of Standards and Technology Interagency

Report 7316, 2006

[17] Federica Paci, Anna Squicciarini, and Nicola Zannone.

“Survey on Access Control for CommunityCentered

Collaborative Systems”. ACM Comput. Surv. 51, 1,
Article 6 (January 2018), 38 pages.

https://docs.python.org/2/library/xml.etree.elementtree.html
https://docs.python.org/2/library/xml.etree.elementtree.html

