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Abstract:
Within the framework of ensemble methods, we investigate on a
compatible learning scheme, denoted as learning by gossip, with
the aim of assessing its feasibility when facing a rather complex
target function. Compatibility is expressed in terms of proba-
bility that the learned function could be actually at the basis of
the observed training set, hence an explanation of it. Feasibility
is in terms of the related Mean Square Error (MSE) on test sets.
Elaborating on ways to improve the performance of the learning
scheme, we assessed its reliability, efficacy and exploitability, via
numerical tools that play the role of learning, educating, feeling
and achieving consciousness in a virtual society. We base or
conclusions on both theoretical and numerical arguments that
are tossed on a well known benchmark. We devote a large space
to provide graphical evidence to some conclusions that may be
exploited in the field of both connected societies and cooperative
computation frameworks.
Keywords: Collective brain, learning by gossip, compatible expla-
nation, ensemble learning, subsymbolic kernels.

I. INTRODUCTION

In principle, two brains work differently because there are
no synapses from the neurons of one brain the ones of the
other. However, if you cut one brain in two you do not get
two running brains. Mostly, this occurs because you break
up the complex organization of neurons in a brain [1]. Tak-
ing in mind this drawback, we proceed in the opposite di-
rection by grouping brains. This is a primordial attitude of
human societies that lies at the basis of their progresses.
In a very rough synopsis, surrogates of the missing inter-
brains synapses have been, in a incremental way along the
time: sub-symbolic messages like gestures, voiced words,
written words, and again sub-symbolic messages like biosig-
nals. Actually, subsimbolic signals re-gained a prominence
with the evolution of the communication channels that, again
from remote to recent times, have been: sensory channels
like eyes and hears, paper, radio-telephone, e-mail and social
networks. Science fiction prophetically anticipated an enor-
mously powerful surrogate as for both contents and chan-
nel represented by telepathy (Isaac Asimov’s Second Foun-
dation [2]). The underlying assumption is that brains become

able to deeply communicate one another so that the organiza-
tion of each neural circuit is preserved and virtual synapses
feed all signals needed for a powerful integration in an over-
all neural network, thus creating a Collective Brain (CB).
The closest analogy we can think of is an ensemble of brains
linked via a social network. Brains may share documents,
messages and sub-symbolic signals as well, the most popu-
lar being represented by the ”I like” flag ( the Boolean re-
sult of a non coded process). While sharing deep documents,
like a philosophy book, among selected people may achieve a
stronger brain plasticity effect fostering powerful minds, the
mandates de-facto of current social networks are: 1) univer-
sality of the members and 2) simplicity of their interactions.
They have both social and technological reasons and support
a sort of society of minds pervading not only the political
sphere but also the scientific one, hence of our interest.
In this paper we delve into this surrogate of collective brain,
in view of evaluating how far is it from the original idea and,
above all, what advantage it brings with respect to a single
brain. Since we are computer scientists and not biologist we
will pursue this goal by substituting, with all caveats, biolog-
ical brains with artificial neural networks.
As for mandates, universality is straightforwardly realized in
terms of scalability of our ensemble. Simplicity, instead, is a
key issue. Simplification is a keyword of modern social life
designating the general aim of removing superfluous rules
and actions from customary interactions among people and
between people and institutions. Concerns may arise when
we transfer this philosophy to the interaction between people
and natural phenomena, e.g. to scientific matters. Undoubt-
edly, facing complex phenomena such as those involving bi-
ological organisms or complex social systems, e.g. those
related to traffic[3], we are compelled to simplify, model,
and synthesize our observations in order to obtain suitable,
though approximate, explanations. Using the paradigmatic
framework of artificial neural networks, we adopt a first sim-
plification consisting of abandoning the quest for a formal
(symbolic) explanation of a phenomenon in favor of a suit-
able simulation of it. To this end, one may consider using
a neural network to combine symbolic functions that locally
understand the phenomenon under study. This approach is
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known as the hybrid ANN paradigm [4]. In this paradigm, the
neural network acts as glue connecting knowledge parcels of
formal knowledge. Alternatively, we may replace the local
symbolic functions with simple neural networks called Gos-
siping Parcels (GPs) to be combined with either majority vot-
ing or a decision tree on the parcel outputs when the overall
explanation is a classification rule, or with a linear combi-
nation of the outputs in the case of a continuous function.
All these schemes require a learning phase where the parcels
and/or the glue are trained to simulate the phenomenon un-
der study. This training can be regarded as ensemble learn-
ing [5, 6], i.e. using multiple learning algorithms to obtain
better accuracy than the one that could be obtained from any
of the constituent learning algorithms alone.
Our approach is to tackle this hard framework consisting of
highly complex phenomena coupled with granular informa-
tion within a general perspective of searching not the truth
about these phenomena, rather explanations of them that are
compatible with the observed data. Thus, we abandon the
ambition of determining optimal strategies or simply describ-
ing phenomena through exact laws. Rather, we relieve the
hardness of the exact solution by looking at looser ones that
are compatible with our observations and our target, at least
to a reasonable extent. This is not a minor goal, just in the
province of practitioners; rather we may support its achieve-
ments with a well-founded theory that extends the bases of
the Algorithmic Inference approach [7] developed in more
canonical contexts. Hence, in this paper we recall the learn-
ing by gossip approach [8, 9], as a general umbrella for many
ensemble methods, like ELM [10, 11] and Reservoir Com-
puting [12], which perform parallel interconnection of sim-
ple learning units (called gossipers or weak learners, as they
undergo only limited training). We focus on rigorously char-
acterizing the gossiper’s activity, in order to exploit the infor-
mation they bring, in spite of their intrinsic roughness.
Learning by gossip, as an implementation of ensemble learn-
ing, extends the learning facility from a ”divide et impera”
perspective, which in modern acceptation could be called
”Object Oriented Learning”: in place of a monolithic model
focused to solve the learning problem in toto, we fragment
it in subproblems whose solutions are properly combined to
get the final answers. The way of fragmenting are various,
the common goal is to deal with weak learners to be com-
bined in an optimal ensemble. The general idea is that while
weak learners are simpler to train, though less accurate, their
inaccuracy can be statistically recovered by the combiner (a
perceptron, an SVM, a majority voter, etc.). Here, we fo-
cus on an ensemble of trainable elementary neural networks
on the same input, in the role of GPs, and a linear function
of their outputs as their combiner. Indeed, our combination
stage is rather straightforward, since it consists of a linear re-
gression that minimizes the sum of the square shifts between
real and simulated outputs. It is important however to under-
line that our regression can ”see the entire error landscape”,
because it is trained in a single shot over all the errors of the
parcels. This way, regression coefficients are computed tak-
ing into account all errors at the same time, rather than epoch-
by-epoch as it would happen should the parcels and the com-
bination stage be co-trained. Framing our contrivance in the
Social Intelligence sphere, we give some answers to the ba-

sic question: to what extent an aggregate of weak learners,
like our GPs, may recover the activity of a strong learner in
supplying acceptable approximation of a target function?
To this aim, the paper is organized as follows. While Sec-
tion II provides the general framework of our inference, Sec-
tion III specializes the framework to our learning by gossip
scheme with a special emphasis to: A. the sample complex-
ity of the learning algorithm, B. the reliability of its results
and C. the optimality of the involved representations.
The answer may become still more complex if, after the
training phase, we subject the GPs to an educational path by
optimizing a goal involving ancillary attitudes of theirs. We
discuss this extension of the model in Section IV, where we
relate the prominence with which the single GPs contribute
to the formation of the overall ensemble response to a proper
reciprocal positioning of them on a plane. While (long term)
training recall genetic mutation along millennia on the hu-
man chromosomes, mobility is a sort of epigenetic process
inducing (short term) adaptation of GPs to their environment,
a process that we may liken to the education of pupils in the
human society.
We devoted a large room in Section V to numerically check
the value of this contrivance in all its variants. As a result,
we provide some hints to appreciate the benefits of our en-
semble approach, as a function of the degree of competence
and education of the GPs and of empowering expedients that
are peculiar of this framework. As a whole, these hints may
represent the conclusion of our paper, that in Section VI we
coupled with the statement that our technique can be likened
to learning a kernel function in a distributed, data-driven way,
as opposed to having a central authority selecting it, e. g. by
trial-and-error. We expect this ”democratic” perspective to
learning to be useful for practical applications as well as in
connection to other state-of-the-art methods.

II. The framework of possible explanations

Given a distribution law, think of its unknown parameters as
random parameters. In place of a specific prior distribution,
they inherit probabilities from a standard source of random
seeds that are also at the basis of the random variables they
are deputed to characterize. Like with a barrel with two in-
terlocking taps, through the former we get, from the source,
samples of the random variable for given parameters; while
from the latter we get samples of the parameters for given ob-
served variables. We measure what happens with the former
and compute what would happen with the latter. This raises
a general inference procedure, that we denote as Algorithmic
Inference [7, 13], whose basic steps are the following:

1. Sampling mechanism MX . It consists of a pair 〈Z,gθ 〉,
where the seed Z is a random variable without unknown
parameters, while the explaining function gθ is a func-
tion mapping from samples {z1, . . . ,zm} of Z to samples
{x1, . . . ,xm} of the random variable X we are interested
in. This function is indexed in θ , which represents the
not yet set parameters of the random variable, i.e either
a scalar value or a vector of values we want to investi-
gate. Thanks to the probability integral transformation
theorem [14] we have that, by using the uniform vari-
able U in [0,1] as a seed, the explaining function gθ for
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X distributed according to any continuous distribution
( with obvious extension to the discrete case) computes
the following mapping:

xi = F−1
X (ui) (1)

where F−1
X is the inverse of the X cumulative distribu-

tion function (CDF). Not always U is the most appro-
priate seed. For instance one prefers using the standard
Gaussian variable Ψ as a seed of a Gaussian variable X
with mean µ and standard deviation σ through the ex-
plaining function xi = (µ +ψiσ), as F−1

X is unavailable
in its closed form for this X .

All this falls in the common practice of random vari-
able simulation. The benefit of formalizing it in terms
of sampling mechanism 〈Z,gθ 〉 lies firstly in a clear
partition of what is out of our handling and what may
be the object of our inference. We can say nothing
new about seeds {z1, . . . ,zm}, since they are randomly
tossed from a perfectly known distribution; hence they
are completely unquestionable as for the single value,
and completely known as for their ensemble properties.
On the contrary, the explaining function groups into θ

the free parameters that we want to infer from the sam-
ple. As for a second benefit, they are exactly the seeds
that state links between observations and parameters of
a given X . We cannot say which value has θ , since we
do not know the seeds of the observations. Rather, we
may transfer the probability mass of the seeds from the
sample to the parameters realizing the sample – our con-
cept of compatibility – as we will see in the next point.

2. Master equations. The actual connection between the
model and the observed data is tossed in terms of a
set of relations between statistics on the data and un-
known parameters that come as a corollary of the sam-
pling mechanism. We call these relations master equa-
tions. Pivoting around the statistic s = h(x1, . . . ,xm) =
h(gθ (z1), . . . ,gθ (zm)), where s and h are vectors in their
general instantiation, the general form of a system of
master equations is:

s = ρ(θ ;z1, . . . ,zm). (2)

With this relation we may inspect the values of the pa-
rameter θ that could have generated a sample with the
observed statistic s from a particular setting of the seeds
{z1, . . . ,zm}. Hence, if we draw seeds according to their
known distribution – uniform in our case – we get a
sample of parameters in response [7]. In order to en-
sure this sample clean properties, we involve sufficient
statistics w.r.t. the parameters [15] in the master equa-
tions. For instance, let consider a negative exponential
r.v. X whose CDF and sampling mechanism are defined
as:

FX (x) = 1− e−λxI[i,∞)(x); x =
− logu

λ
(3)

where u is a seed uniformly drawn in [0,1] and λ ∈
[0,∞) is the unknown parameter to be inferred on the ba-
sis of an m-sized sample x. If we identify as a suitable
( well-behaving in [16]) statistic the sufficient statistic

Figure. 1: (a) Course of sλ w.r.t. λ and histogram of the
parameter when sΛ = 10

sΛ = ∑
m
i=1 xi, a monotonic non increasing relationship

reads: (
λ ≤ λ̃

)
⇔
(

sλ ≥ s
λ̃

)
(4)

where s
λ̃
= ∑

m
i=1 x̃i and x̃i is the value into which ui

would map if we substitute λ with λ̃ in the explaining
function. As Sλ follows a Gamma distribution law with
shape and scale parameters respectively m and 1/λ [17],
we have that Λ as well follows a Gamma distribution of
parameters m and 1/sΛ, thanks to the commuting roles
of variable specification and parameter between sλ and
λ .

3. Parameters population. Having fixed a set of master
equations, you may draw seeds in an infinitely large
number so as to map from a population of seeds into
a population that is representative of the random param-
eter Θ. The specific features of the mapping translate
the uniform distribution of the former into a properly
shaped distribution of the latter. In this way we obtain
the graph in Figure 1, which reports the distribution law
of the random parameter Λ.

A. The gossip variant

The goal of gossipers inference is a function f to be re-
gressed from a set of input-output pairs. The regression func-
tion is constituted by the questioned GPs ensemble (GPE)
where in turn, in the basic version, GPs are three-layers per-
ceptrons ( feed-forward neural networks (FNN) in general)
whose hidden layer is activated by a sigmoidal-logistic func-
tion. The output layer is linearly activated and uniformly ran-
dom bound weights are used in all layers. As shown in Fig. 2
the GP output is sent to an upper node representing the lin-
ear combiner producing the GPE output. In this contrivance,
seeds are multivariate, as they are represented by the outputs
of the GPE. They comply with their definition in Point 1),
where a multivariate X is the output of the neural networks
that in turn is the seed Z of the variable Y produced by the
combiner. Different sampling mechanisms, hence different
X distributions, correspond to different weights extractions,
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Figure. 2: The basic model
.

and, thank to weights independence, their ensemble is a suit-
able Z for Y . Things become less straightforward if we de-
cide to train the GPs [18]. Complexity does not derive from
a reduction of the parameters’ randomness per se; actually
function gθ in the sampling mechanism may be completely
deterministic too. Rather, it derives from the dependency of
the learned parameters on the training set that determines a
dependency among seeds as well, as we will discuss in next
sections.

III. Learning by gossip

Using the gossip responses Z as seeds has the drawback of
working with a unknown seed distribution law that can be
recovered only by simulation. On the other hand, computing
the output of the questioned function f as a linear function of
Z makes the statistic mean square error S = ∑(t− y)2 - with
t = the target value and y = the value actually computed by
the learned function - to be individually sufficient [17] w.r.t.
the related coefficient of the linear function. Rather than on
the values of the regression coefficients, we focus directly on
S (or analogous ones) to appreciate the quality of our infer-
ence. Denoting with Σ the extension of the above sum over
the entire Y population, i.e. to the entire input to the learned
function, S is an estimate of Σ that we may parametrize as
follows

S = h(X,W) (5)

where X is a sample in input to f and W is the set of the
three-layer perceptron weights. For fixed w we face the usual
bias-variance trade off. For any training set - test set split of
x, different ws denote different representations of the learn-
ing problem, among which we may screen the more efficient
ones. In accordance to our model, we read the entire GPE
contrivance as a sub-symbolic kernelization of a linear re-
gression problem. Kernels are originated by a mapping func-
tion φ so that the Kernel matrix (for instance, at the bassis of
the support vector discrimination) is

Ki j = φ(xi) ·φ(xi)

where φ is decided a priori. In our case, we aim to learn φ

exactly.

A. Learning as a matter of sample complexity

Coming to a binary version of the problem for the sake
of simplicity, let us consider a straight line in the two-
dimensional case and a plane in the three-dimensional one,
as linear separators dividing positive from negative points
(Fig. 3). One of the linear delimiters is the “true” divider

-– the concept c, the second is our hypothesis h about it. To
avoid the growth of the symmetric difference between con-
cept and hypothesis, we need at most 2 or 3 points (we call
sentry points) that bar a rotation of the hypothesis so as to
have another symmetric difference completely including the
current one.
The key functionality of the sentry points is to bind the ex-
pansion of the symmetric difference c÷h through forbidding
any rotation of h into a h′ pivoted along the intersection of
c with h. Whatever the dimensionality n of the embedding
space, in principle we would need only 1 point on the border
of the angle between c and h, provided we know the target
concept c. This point will act as a sentry against this expan-
sion [19]. In fact constraining h′ to contain the intersection
of h with c gives rise to up to n−1 linear relations on h′ coef-
ficients, resulting in a single degree of freedom for h′ coeffi-
cient, i.e. a single sentry point. However, as we do not know
c, the chosen sentry point may lie exactly in the intersection
between c and h, preventing it to sentinel the expansion of the
symmetric difference. So we need one more sentry point, and
in general, as many points as the dimensionality of the space.
Figures 3(a) and (b) illustrate this concept in case n = 2 and
n = 3 respectively. Sentry points provide a way of charac-
terizing the sample complexity of a class of concepts [20]
(hyperplanes, in our case), that is dual to the Vapnick Cervo-
nenkis complexity [21]. There are theorems in the literature
that establish the equivalence between these two notions of
complexity, but the notion adopted here allows to visualize
the role of the points determining the complexity [22]. In
our case, the points to be divided are the results of (weakly
trained) GPs . This is another way of kernelizing the X space
where the original points lie.
In other words, sentry points are minimal sets of points ca-
pable of binding the symmetric difference between concepts
in a given class and hypotheses generated by a consistent al-
gorithm. Sentry points shown in Fig. 3 are representatives
of groups that bind the concept-hypothesis symmetric differ-
ence related to the weak learners. Denoting by nc the number
of sentry points of our combiner and by nwi the one of the i-th
GP, the theory says that the number nt of sentry points of the
GPE ensemble is given by [22]

nt ≤ nc×nw (6)

Eq. (6) is more binding than the analogous inequality which
holds on the growth functions [23]. In our case, the common
value nw of nwis is O(NLog(N)), where N is the total number
of training parameters of the multi-layer perceptron realizing
the weakly trained GPs [24]. The detail nc of a hyperplane
(the target of our learning) is equal to the h yperplane di-
mension. Within this framework, we will now investigate
the efficiency of our learning paradigm and its exploitability
beyond the usual statistic properties.

B. The reliability of the gossip perspective

From (6) we see that we can modulate our learning effort as
a function of the complexity of the target function f . Indeed,
the GPE’s sample complexity depends on the richness ot this
contrivance, hence on the number and structure of its GPs.
In turn, the approximation of the trained function g with f
depends on the gap between the sample complexity of f and
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Figure. 3: Sentry points needed in the worst case to bind the symmetric difference between the hypothesis h and the target
concept c in (a) two-dimensional and (b) three-dimensional spaces.

the one of g. In synthesis, we may empower the GPE to fill
up this gap. This comes, however, at a computational cost
determined by the GPE sample complexity and the accuracy
with which we decide to train the single GPs, where binding
the training time reverts in a smaller nw. We are basing our
computation on a definitely random background: it is con-
stituted by the random initialization of the GP parameters
as a reasonable counterpart of the uninformed gossip back-
ground in a social network. The latter is randomly biased by
the environment of the individual gossiper, its education and
surrounding influencers included. Hence our question is: can
we rely on the opinion of such poor interlocutors? We are as-
sured by both theoretical and experimental arguments. As for
the former, our ultimate inference problem is to learn a hy-
perplane, that is the most elementary function to be inferred.
Indeed, VC dimension and detail of a hyperplane are equal
to the hyperplane dimensionality d. This makes S extremely
close to the Σ with high probability (1−η) – that meets our
wish, namely:

Σ≤ S+

√
d(log(2N/d)+1− log(η/4)

N
(7)

where N is the sample size. Numerical evidence will be the
goal of the next section.

C. Beyond Probability

Probability looks the most convenient tool for describing un-
certain situations. Provided you know your sample space and
you have enough observations of it, you can organize the ob-
servations into statistics so as to reliably infer general prop-
erties of the sample space that may prove useful in future
occasions. The key is to relate the statistics to the properties
in a way that the frequency with which these properties are
falsified is asymptotically as small as you want. This is the
basis strategy of Algorithmic Inference [7].
Our current framework is notably more complex: we have
two families of seeds, one underlying the random input X,
another the random weights W and a sub-symbolic function
(the neural network) relating them to the questioned property,
i.e. the MSE Σ of the inferred g. This foils any effort to infer
the Σ distribution law. Rather, we may try conditioning our
operational framework so as to favor low values of Σ.

We acquaint this problem from the ergodic process perspec-
tive. Let us consider a sequence of random variables X on
the same discrete and finite probability space. It means that
the set X of values the random variable may assume along
the sequence is the same. What changes is the probability
distribution on them. Thus, the probability mass of a value
is a function of two parameters: the specific value concerned
and the step along the sequence at which we are questioning
the probability. In the Markov process this step is denoted
as a time clock, where the time progress is punctuated by the
transform applied to the probability distribution over X. It is
a transition matrix M so that Pt+1 = MPt . In our case W,
which is randomly generated at each clock, affects the Σ dis-
tribution in a way that is independent of the randomness of X
(since we train on a given x) . In general terms, a process is
denoted as ergodic if for any regular function ψ the sample
mean of ψ along an infinite sampled trajectory of X equals
the expected value of ψ(X) at any clock time. Our goal is
to enforce a similar property on the random process of our
computation,so that the observation of a sequence of MSE
for a fixed X sample along a long sequence of W will give
us insight about properties of Σ for a fixed W along a long
sequence of X samples. In this way we aim at identifying an
optimal W which minimizes the generalization MSE, expect-
ing that this optimality will remain in place when further X
samples will be considered. Hence our first question is about
the ergodicity of our pseudo-process. From the algorithmic
perspective, X and W play a symmetric role in the input a to
the FNNs hidden layer. For instance, let consider a three (in-
put, hidden, output) layer GP and split W into W01 weights
between input and hidden layer and W12 between hidden and
output layer. We simply obtain:

a = W01 ·x

Any subsequent computation depends on a, apart from the
final linear regression which depends separately on x. More-
over, a proper rescaling of both variables induces similar
ranges in the two directions X and W01, while the preva-
lence of linear operators leads to normal distributions in both
cases. Numerical experiments discussed in the next section
confirm this analysis. Hence, given this directions’ twisting
for grant, on a given sample we simulate many GPEs and fo-



Collective brain surrogates 6

cus on the one computing the minimum S. We remark that
the cumulative distribution of minimal Σ will be biased to-
ward 0 with the number of ensembles — a condition that
makes the observed minimum close to the optimum. The rel-
evant question is: ”who tell us that this optimality condition
will be preserved on a new instance of X? ”is solved by the
closeness of S to Σ highlighted in (7) that allows us to rely
on the persistence of optimality. Rather, problems arise from
the relations between performances on training and testing.
Here the overfitting trap represents again a big issue as it will
be shown in the numerical experiments.

IV. Moving gossips

We look for a further improvement of our ensemble solu-
tion by weighting the contribution of the GPs. In turn this
is achieved by a quick incremental process in a space that
is orthogonal to the one of the FNN connection weights that
has been exploited during the training phase. Namely, we
put the GPs in a plane and endow them with mobility, so that
they can pursue a proper positioning w.r.t. the others in or-
der to: 1) get the most favorable position with respect the
source of information (the teacher in the training phase) and
2) avoiding neighboring other GPs trained with the same ef-
fects (hence assessed with similar parameters — the neural
network connection weights — to process the input), thus re-
sulting uselessly redundant [25]. To this aim, the dynamic of
the GPs motion is specified as follows.

A. The Lagrangian of GPs

Let us recall the general model [26] referring to an r-layer
MLP where all neurons of a layer are located in an Euclidean
(two-dimensional, by default) space X. We fix the layout
notation, where subscript j refers to neurons lying on layer
`+ 1 and i, i′ to those located in layer `. Namely, on each
neuron indexed by i we have:

• an attraction force A by the neurons of the upward layer,
which for each j is expressed by:

A = G
m jmi

ζ 2
ji

(8)

where G is the gravitational constant and ζ ji is the dis-
tance between the two neurons in their role of particles
of masses mi,m j. The distance is considered in a three-
dimensional space, where the third coordinate refers to
the distance between layers. We assume it to be a con-
stant h so high that it allows us to resume in it both the
contribution of the components in the X plane and the
square root of G, for the sake of simplicity;

• an l-repulsive elastic force R between particles of the
same layer which are closer than l, expressed by:

R = kii′max{0, l−dii′} (9)

where kii′ is the elastic constant between particles i and
i′. The force is linearly dependent on the compression
l−dii′ between them.

Hence, the cumulated physical energy of the network is the
sum of the three terms:

L = ξp1P1 +ξp2P2 +ξp3P3 (10)

for suitable ξpi , with

P1 =
1
h ∑

i, j
mim j (11)

P2 =
1
2 ∑

i,i′
kii′max{0, l−dii′}2 (12)

P3 =
1
2 ∑

i
mi‖vi‖2 (13)

Of the above expressions, the former states the gravitational
potential corresponding to (8), the second expresses an l-
repulsive elastic energy and the latter the kinetic energy in
correspondence to the neuron velocities vis.
In this physical environment the Lagrangian functional rul-
ing the motion of the neuron in the role of particle finds a
solution in the Eulerian dynamics. It entails the classical
kinematic equations linking the particle position to the ac-
celerations and relates the latter, in turn, to the correspond-
ing conservative force field (see Figure 4). In particular, the
acceleration vector for the generic neuron is described as fol-
lows:

ai = ξ1 ∑
j

m jsign(x j− xi))+

−ξ2 ∑
i′

kii′max{0, l−dii′}sign(xi′ − xi) (14)

for proper ξi. Moreover, in order to guide the system to-
ward a stable configuration, we add a viscosity term which is
inversely proportional to the actual velocity, namely −ξ3vi,
which we do not reckon within the Lagrangian addends for
the sake of simplicity. In turn, denoting with x(n)i ,v(n)i , and
a(n)i respectively the position, velocity and acceleration of
neuron i at instant n (after a suitable time discretization), we
come to the usual kinematic equation:

x(n)i = x(n−1)
i + v(n−1)

i tn + 1/2 a(n)i t2
n (15)

with tn denoting the length of the n-th time step.
To conclude the model we identify:

• the mass of the neurons with their information content,
which in a back-propagation training procedure is rep-
resented by the back-piped error term δ . Moreover we
get the neuron mass after a suitable normalization in or-
der to maintain constant the total mass on each layer;
namely: mi =

|δi|
‖δ‖1

.

• the elastic constant kii′ hinges on how similar the
normed weight vectors are, i.e. on the modulus of the
cosine of the angle between them:

kii′ =

∣∣∣∣ 〈wi ·wi′〉
‖wi‖ · ‖wi′‖

∣∣∣∣ (16)

We adapt this model to the top layers of our architecture,
namely to the layer containing the GP output nodes and the
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Figure. 4: Potential field generated by both attractive upward
neurons (black bullets) and repulsive siblings (gray bullets).
The bullet size is proportional to the strength of the field,
hence either to the neuron mass (black neurons) or to the
assumed outgoing connection weights similarity (gray neu-
rons). Arrows: stream of the potential field; black contour
lines: isopotential curves.

uppermost one made up of the node collecting the results of
the linear regression on them. Of the above formulas, the one
we modified is eq. (14) where we substitute the mass of the
upper layer with the one of the lower layer to give sensitivity
the dynamics. In turn, the masses of the lower layer simply
coincide with the GP output error.

V. Numerical experiments

We based our experiments on the well-knowm Pumadyn
benchmark pumadyn8-nm. This benchmark is drawn from
a family of datasets which are synthetically generated from
a Matlab simulation of a robot arm [27]. It contains 4,500
samples, each constituted by 8 inputs and one output. The
former record the angular positions and velocities of three
arm joints plus the value of two applied torques. The lat-
ter is the resulting angular acceleration of one of the joints.
This acceleration is a nonlinear function of the inputs which
is affected by moderate noise as well. Our reference result
is the one obtained some years ago through a special 5 lay-
ers FFN where the neurons of a layer are allowed to move
inside it to get the most rewarding position with respect to
neurons of the upper layer [26]. We appreciate the gener-
alization capability of the network in Fig. 5(a), where we
represent in blue the sorted test set targets and in gray the
corresponding values computed by our network using both
training and testing replicas of size 512, according to DELVE
testing scheme [28].
We replace this complex neural network with our contrivance
getting results like in Fig. 5(b). Namely, we span a set con-
figurations where we stressed:

• the GP architecture: either 3Layer (8,nh,1) or
5L(8,nh,

⌊
nh/2c,bnh/3c,1)

200 400 600 800 1000

-1.0

-0.5

0.5

1.0

Figure. 5: Errors on Pumadyn regression. Course of the
network output with sorted target patterns achieved by (a)
a complex neural network, (b) one of the most performing
GPE

Minima and extremes
Experiment training testing

min exteme min exteme
3Lα = 0.00005 0.0738381 0.0755341 0.0818115 0.0885704
5Lα = 0.00005 0.063183 0.063183 0.0740216 0.0750288
5Lα = 0.0005 0.063165 0.0634284 0.0656679 0.0694787

Table 1: Features and Conditions

• number nh of neurons in the main hidden layer, ranging
from 60 to 90

• number of GPs, ranging from 60 to 160

We train the GPs in parallel and solve in a single shot the
identification of the regression coefficients of the combiner
neuron.
We rely on a single train/test split to gain a first sensitivity
on the operational parameters that may be synthesized in the
surfaces in Fig 6.
The pictures show that enriching the GP architecture gener-
ally pays in terms of training and testing error. A smaller
learning rate (5×10−6) insures a regular descent of these er-
rors that prevents overfitting. Table 1 denotes that a more
aggressive learning (learning rate =5× 10−5) may provide
somehow smaller errors with a non clear parametrization that
produces overfitting, with a divergence betwen the training
and testing surfaces. Consequently the minimum does not
lie in correspondence of the maximal degrees of freedom and
training epochs (where we registered the extreme value). In
any case, the more rich GP architecture achieved by the five
layer neural network fosters a better performance of the en-
tire GPE.
We also realize that the ensemble significantly improves the
skill of the single GP. For instance, the graph in Fig. 7 shows
a gain around 1.5, with obviously better benefits with the
growth of the training degrees of freedom. Actually this may
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3 Layers, α = 0.000005

(a)

5 Layers, α = 0.000005

(b)

5 Layers, α = 0.00005

(c)

Figure. 6: MSE trend with number oh hidden nodes varying fro 60 to 160 and nunber of wphocs vaying fron 200 to 500.
Labels on the graph specify the number og GPs, the number of layers and the learning rate.
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be considered as the benefit of the consciousness the single
GPs gain as a statistical effect of combining at a metalevel
the opinions of the other gossipers.

A. Stressing the method

In this paper we are mainly concerned with the reliability of
these trends, i.e. on their stability with changing surround-
ings. For this reason, we:

• Investigated replicas of the experiments as for both the
train/test random split and training parameters initial-
ization.

• Run the experiments on two neural network optimizers,
respectively supplied by sklearn (skl) and TensorFlow
(tf ) packages, with different options on the optimizing
algorithm.

While experiments in Fig. 6 have been carried out by using
skl, we shifted from skl to tf to carry out more computing-
intensive experiments in view of gaining in computational
efficiency. Namely, on each grid point we computed 8 repli-
cas of the experiment to appreciate the dispersion of the
solutions. On each replica we changed both the random
(0.75,0.25) split of the dataset and the random initialization
of the GP MLPs. We focused on the (3L,5×10−6) solution
as a much effective and relatively cheap one. The interpolat-
ing surface is the 3Dplot joining the mean value of the above
points in Fig. 8.
Looking at Fig.8 we can learn some lessons:

1. For the same architecture, investing in computational ef-
forts is generally rewarding, but shows a saturation ef-
fect. We may stress all the three parameters, but

• Over around 300 training epochs no tangible ben-
efits arises

• The number of hidden layer nodes may be
stretched as well but 100 looks a reasonable
threshold

• Number of GPs appear the most sensitive scale pa-
rameter tough with analogous saturation.

2. The dispersion of the solutions is limited enough, so jus-
tifying the above computational efforts to improve the
mean performance

3. A relevant benefit of investing in computational effort is
the avoidance of overfitting, that appears more frequent
with shrunk architectures (with a few hidden nodes and
GPs).

In Fig. 9 we contrasted these results with the analogous ones
we got by using skl. On the latter, we focused on a single
item per each grid node, given the limited dispersion dis-
cussed above, and only on the extreme cases got with high
numbers of hidden neurons (90). What emerges in Fig.9 is
that MSEs obtained with tf are a bit better. Both packages
implement the same base algorithm, thus differences come
from minor strategic choices. For instance, hidden neurons
are activateb by a sigmoidal function in tf and tanh in skl.
Other parameters such batch-size and momentum have been

set in a neutral way, i.e. by using exactly the default values
of the two packages.
We also remark the different roles of the three operational
parameters. Namely, Fig. 10 (a) highlights the preeminent
role of nGPs with respect to nhidden and nepochs. In particular,
the latter may host overfitting, as shown in fig. 10(b).
Concerning the last point of Section II, we remark that
Fig. 11 denotes an asymptotic growth of the correlation be-
tween the errors of the various GPs with their training, as a
consequence of the uniform efficacy of the training. Whereas
the information contribution of the single GPs to the ensem-
ble learning is certified by the well distribution of the spreads
around the true values as it emerges from the pictures in
Fig. 12.

B. Gossiper promenades

After the training phase, we may enforce further education
on each GP by optimizing a goal involving ancillary atti-
tudes. Namely we let the GPs evolve according to the dy-
namics outlined in Section IV-A. Figure 13 reports the train-
ing and test set errors of 6 GPEs with a graduation of their
previous training and the companion evolution of their mu-
tual positions. Each GP is constituted by a three layer FFN
with 60 hidden neurons. We focused on GPEs made up of 16
members initially located on a square grid. Then, after the
training phase, we let them change their positions according
to (15) along 100 steps. The five pictures on each line refer
to a training phase made up of tcn = {20,70,120,170,220}
learning cycles. Given the exiguity of the boiling up param-
eters the learning rate α has been set to 0.005 Figure 14
differs from Figure 13 only for the position of the attractor,
respectively in the center of the grid in the former and under
the lower left corner in the latter.
Comparing Figures 13 and 14 with Figures 6 and 8 we may
say that education is never a waste, even though it affects
only slightly the efficacy of the ensemble. With only 16 GPs
and 60 hidden nodes, a proper spatial location of the former
reduces the errors both in training and test of around 10%, a
relative improvement requiring variously (from 10to 100%)
enlarging the hidden nodes in the comparative pictures. A
second consideration concerns the attractor position. A po-
sition outside the original grid generally foster a better per-
formance than a position inside. Finally, the GP promenades
may induce bifurcation, with some trajectory inducing MSE
improvements while others may degrade the performance.

C. Looking for representations

Another lesson we may take from our experiments concerns
the most effective contributions of the GPs. The idea is that,
rather than relying of the output of scarcely skilled GPs we
can get better results by looking at what they understand of
the input, hence to the hidden neurons outputs that are used to
in the regression in place of the final output. This algorithm
mode, that we denote as Share, produces an enlargement of
the regression input, escaping biases contained in the out-
put, and definitely an improvement of the results. We imple-
mented it on the three-layer version of GPs. Figure 15 shows
similar figures of Fig. 6, though with a definitely limited
number of GPs and hidden neurons. Note that in this case
we maintain the learning rate extremely low, α = 0.000005



Collective brain surrogates 10

Figure. 7: Ratio of Mean GP training MSE over ensemble training MSE with the number of hidden nodes and of training
epochs.

Figure. 8: Same graphs as in Fig. 6(a), but using a different algorithm

Figure. 9: Contrasting the graphs in Figg. 6(a) and 8

train,n_hid=60,n_GPs=160

test,n_hid=60,n_GPs=160

100 200 300 400 500
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0.082

0.084
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0.090

Figure. 10: Test MSE trend with operational parameters in an extended grid (ne pochs ranging from 30 to 500) in three and
two-dimensional spaces.
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3L,num_hidden=90,num_GPS=90, α=0.000005
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n_epochs*50
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mean correlation

Figure. 11: Growth of the correlation between the errors of
the various GPs with their training.

.

because we prefer having a slow evolution of the 60×16 in-
puts to the linear combiner.

D. Weighting the gossiper’s perception

In search of the cumulative effect of representation plus mo-
tion, we followed again the trained GPs in their evolution in
the positioning space and affect with the out-coming weights
exactly the hidden layer outputs generated as in the previous
section. Also in this case a proper positioning of the GPs
improves the procedure’s accuracy, as shown in Figure 16.
However it is a matter of fractions of percentage points, as
a residual improvement after considering the hidden nodes
outputs. Also the trends of the error require consideration,
since we have a small degradation of the training error, cou-
pled with a small improvement of the testing error.

E. Exploiting the method

A further lesson concerns meritocracy. Does it make sense
to focus on the best performing GPEs?
As a preliminary cionsideration, in Fig. 17 we report the em-
pirical CDF of the test set MSE of 60 replicas of the grid
point (nhidden = 90,nGPs = 90,ne(pochs) = 30) and of 24 repli-
cas of the grid point (nh = 90,nGPs = 90,ne = 350). Both
curves denote an almost uniform distribution in a range that
depends on the number of training epochs. The different col-
ors refer to different train/test random split of the dataset.
Their uniform distributions denote the absence of bias due to
the splits.
Fig. 18 fosters a positive answer to our question with some
caveats. We consider two instances, the former referring to a
GPE made up of 16 GPs, the latter of 60 GPs. In both cases
each GP consists of a 5 layers FFN with nh = 60. The data
collection strategy was the following. :

1. Exploratory phase. Draw an initial sample of size 800
from the training data and of size 400 from the tast data.
Generate from the former 100 GPE replicas, They have
FFN connection weight and threshold that are initially
random (with different seeds) and then trained for ne
epochs with learning rate α . Draw the the training MSE
ECDF and the test MSE CDF (red curves in the first
column)

2. Control phase. From the the training MSE ECDF ex-
tract the 50 th quantile and use the corresponding GPE
replica as a common replica – the control GPE.

(a) Case phase. Draw 100 further training and test
samples (of the above size) and draw the corre-
sponding MSE ECDF (blue curves).

3. From the the training MSE ECDF extract the 20 th
quantile and use the corresponding GPE replica as a
near optimal replica (too much extreme quantile could
refer to anomalous conditions) – the case GPE.

(a) Draw 100 further training and test samples (of
the above size) and draw the corresponding MSE
ECDF (green curves).

Since hyperplanes are driven by the sampled values, the sec-
ond and third graphs refer to populations with greater num-
ber of degrees of freedom with respect the former, that gen-
erally reflects into a better descent toward minimal MSE –
that implies some drift from the ergodicity assumption in
section III-C. The first row supports our thesis about mer-
itocracy. The graphs in the first columns report the testing
MSE in the three phases. Green curve above blue curve de-
notes that the near optimal ensemble privileges smaller MSE
that the common replica, and its median almost coincides
with the testing MSE of this replica computed on the initial
sample. The second row shows the blue and green curves
intertwining. This depends on two factors:

• a longer training of the GPs: 20 epochs in the former
experiment versus 200 in the current one. This renders
the performances of the case and control ensembles ex-
tremely close

• an high value of the learning rate inducing overfitting.
Actually we used α = 0.00005, which in Fig 6 shown
this phenomenon for analogous GPEs.

Column two and three in Fig. 18 highlight this difference. In
the first row we have close MSE values in training and testing
with a positive correlation denoting coherence. In the second
row is the opposite.
Thus, like in the human life, meritocracy needs to be framed
in a proper context to avoid unfaithful representations. A key
to interpret these situations may be the correlation between
training and testing MSE, that in the instance of the first row
equals 0,44, in the second equals−0.61. This value does not
disincentivize long trainings, rather asks for careful trainings.
For instance the same GPE instance of row two trained with
,α = 10−6 gives rise to a correlation equal 0.992.

F. Numerical discussion

Having accuracy and computational effort as performance
metrics, we may synthesize our numerical analysis through
the following considerations:

1. The answer to the basic question: ”Can an ensemble
of weak learners replace a strong expert?” is: ”it de-
pends on the quality of the results we expect”, hence
on its compatibility with the observed data, contrasted
with the effort/competence we want to put on the plate.
Coming to our specific case, Fig. 5 clearly establishes
that the simplification introduced by the GPE algorithm,
and its variants, force us to settle on a relatively coarse
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Figure. 12: Hitrogram of the GPS spreads around three true points and true-fitted values scatterplot of two (blue,red) GPs.
.

20 40 60 80

0.102

0.104

0.106

0.108

0.112

0.114
tcn=20

20 40 60 800.095

0.100

0.105

0.110

0.115

tcn=70

20 40 60 80
0.095

0.105

0.110

tcn=120

20 40 60 80

0.100

0.105

0.110

0.115

0.120
tcn=170

20 40 60 80

0.095

0.100

0.105

0.115

tcn=220

-20 -10 10 20 30
-10

10

20

30

40

tcn=20

-5000 5000 10000

-10000

-5000

5000

tcn=70

-10 10 20 30

-20

-10

10

20

30

tcn=120

5 10 15 20 25 30
-10

10

20

30

40
tcn=170

-20 -10 10 20 30 40

-20

-10

10

20

30

tcn=220

Figure. 13: Trends of moving GPEs. First row: course of MSE with motion steps after the number of training cycles on
the headings; black curves: training errors, red curves testing errors. Second row: the companion GP promenades; different
colors refers to different GPs; red bullets: initial GP positions, brown bullet: techer position

20 40 60 80

0.113
0.114
0.115
0.116
0.117
0.118

tcn=20

20 40 60 80
0.095

0.105

0.110

0.115

0.120

tcn=70

20 40 60 80

0.095

0.100

0.105

0.115

0.120
tcn=120

20 40 60 80

0.090

0.095

0.100

0.110

0.115

0.120
tcn=170

20 40 60 80

0.100

0.110

0.115

0.120
tcn=220

5 10 15 20 25 30 35

10

20

30

40
tcn=20

20 30 4010

20

25

30

35

40

tcn=70

-10 0 10 20 30 40 50

20

40

60

tcn=120

-10 0 20 30 40 50

10

20

30

40

50
tcn=170

-50000 50000 100000

-100000

-50000

50000

100000
tcn=220
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Figure. 16: Similar graphs of Fig. 6 but referred to the Share algorithm with moving GPs and a single setting of the parame-
ters.
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Figure. 17: Empirical cumulative distribution functions of
MSE samples on a grid cell. Different colors denote different
train/test splits .

approximation of the function compatible with the ob-
served data we were looking for. Actually ranging from
the random case (both target and regressed value are in-
dependent uniform random variables in [−1,1]) till the
rather sophisticated way expressed in Fig. 5(b) of re-
gressing the latter on the former, we have an MSE gap
with extremes (0.1667,0.006). The left extreme is not
the most unfavorable one, since it does not take into ac-
count biases and correlations, the right one is not the
most favorable, like we simply may discover in [27].
More closely to our framework and in very rough terms,
MSE of a single GP is O(0.14) while MSE of our best
contrivance is O(0.05). This denotes an appreciable im-
provement, yet maintaining our accuracy one order less
than the left end of the gap.

2. To bring down the MSE from O(0.14) to O(0.05) we
experimented strategies and tools.

• Regarding strategies, we could establish what fol-
lows:

– when investing on computational resources,
privilege member skills (the number of layers
of our perceptrons) first and train the mem-
bers gently (very low learning rate) and ap-
propriately (proper activation functions)

– for a given skill consider that there is a limit
to its improvement coming from both the
strength of the architecture (number of hidden
nodes) and the length of the training. Above a
given strength and length, improvements be-
come intangible. The values of these thresh-
olds increase with the complexity of the ar-
chitecture.

3. Regarding tools, we experimented two variants of the

GPE algorithm in terms of:

(a) Given the weakness of the GPs, as a counterpart
of the search for local simplicity and save of re-
sources, we may opt for issuing the final response
of the collective brain on the way the GPs perceive
the external solicitations (the input of the regres-
sion problem) rather than on the poor evaluation
they can produce of these inputs. Thus we may
base the final regression on the output of the hid-
den neurons of a small number of GPs getting re-
sults that are comparable with those obtained with
one order large number of GPs.

(b) To reduce the weakness of the GPs, we educate
them, after training, just by inducing them to
search the best spatial position with respect to the
teacher (the proper pupil and chair desks in a class-
room). This is done in order to attribute a proper
weight to the GPs output to produce the ensemble
result. This may produce a further 10% decrease
of MSE.

VI. Conclusions

Trying to understand which kind of Collective Brain we
are de facto implementing today, and, above all, the bene-
fits/drawbacks coming from this ecosystem, we stressed the
CB paradigm on a controllable environment where we can
quantitatively appreciate efforts and performances. Numeri-
cal experiments on the well know benchmark represented by
Pumadyn regression allows us establishing clear indications
and caveats on the collective brain management.
Besides delving into quantitative aspects, we highlighted a
methodological one as well, concerning learning of sub-
symbolic kernels. Kernelized spaces are a formidable re-
source to get rid of some learning problems. However the
identification of a proper kernel remains in the domain of in-
tuition and trial-and-error methods, with the further problem
of rendering kernel implementation as less costly as possi-
ble [29]. Our approach provides a way of learning the map-
ping functions originating the kernels with a computational
effort that remains under our control. This is not a minor
task, since a proper kernelization leads us beyond probabilis-
tic evaluations. We used a simple numerical experiment to
show that ”a kernel is for life” provided some ergodic condi-
tions are satisfied, so that if we experiment a good kernel in
the training phase, we are almost sure of its perfomance also
in the test phase
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Figure. 18: Two instances in search of optimal representations.

What we propose in this paper is just the start of a research
line that we plan to develop in the future with more extensive
both theoretical and numerical investigations. We concen-
trate on a single benchmark to appreciate many nuances of
the approach. We expect interesting results by implementing
the approach in both sociological frameworks in the field of
social networks and in approximate computation tasks to al-
low a variety of computational resources to be accessible to
a vast community of AI workers.

References

[1] I. McGilchrist, “Reciprocal organization of the cerebral
hemispheres.” Dialogues Clin Neurosci., vol. 12, no. 4,
pp. 503–515, 2010.

[2] S. Nelson, P.and Zyglidopoulos, “Learning from foun-
dation: Asimov’s psychohistory and the limits of or-
ganization theory.” Organization, no. 4, pp. 591–608,
1999.

[3] A. Dhanhani, E. Damiani, R. Mizouni, and D. Wang,
“Analysis of shapelet transform usage in traffic event
detection,” in IEEE Cognitive Computing Congress, pp.
41–48.

[4] B. Apolloni and F. Kurfess, Eds., From Synapses to
Rules – Discovering Symbolic Rules from Neural Pro-
cessed Data. New York: Kluwer Academic/Plenum
Publishers, 2002.

[5] T. G. Dietterich, “Ensemble methods in machine learn-
ing,” in Multiple Classifier Systems. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2000, pp. 1–15.

[6] O. Sagi and L. Rokach, “Ensemble learning: A survey,”
WIREs Data Mining and Knowledge Discovery,

vol. 8, no. 4, p. e1249, 2018. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1249

[7] A. B., M. D, and G. S, Algorithmic Inference in Ma-
chine Learning. ADELAIDE – AUS: Advanced
Knowledge International Pty, 2006, vol. 5.

[8] A. B., D. Malchiodi, and J. Taylor, “Learning by
gossip: a principled information exchange model
in social networks,” COGNITIVE COMPUTATION,
vol. 5, pp. 327–339, 2013. [Online]. Available:
http://dx.medra.org/10.1007/s12559-013-9211-6

[9] B. Apolloni, C. Aitis, and M. Maffetti, “Watching by
gossip,” Internet of Things, vol. 3-4, pp. 90 – 103, 2018.

[10] G.-B. Huang and L. Chen, “Convex incremental ex-
treme learning machine,” Neurocomputing, vol. 70,
no. 16, pp. 3056 – 3062, 2007.

[11] R. M. Parkavi, M. Shanthi, and M. C. Bhuvaneshwari,
“Recent Trends in ELM and MLELM : A review,”
Advances in Science, Technology and Engineering
Systems Journal, vol. 2, no. 1, pp. 69–75, 2017.
[Online]. Available: http://astesj.com/archive/volume-
2/volume-2-issue-1/recent-trends-elm-mlelm-review/
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