
Journal of Network and Innovative Computing

ISSN 2160-2174 Volume 1 (2013) pp. 234-247

© MIR Labs, www.mirlabs.net/jnic/index.html

Dynamic Publishers, Inc., USA

WSDL-TC: Temporal Customization of Web

Services

Preeti Marwaha
1
, Hema Banati

2
 and Punam Bedi

3

1 Department of Computer Science, AND College, University of Delhi,

Kalkaji, Delhi 110019, India

preeti_andc@yahoo.com

2 Department of Computer Science, Dyal Singh College, University of Delhi,

Lodi Road, Delhi 110003, India

banatihema@hotmail.com

3 Department of Computer Science, University of Delhi,

Delhi 110007, India

pbedi@cs.du.ac.in

Abstract: Nowadays, companies recognize the need to be

customer driven by providing superior service to satisfy

customers' needs. But as customers and their needs grow

increasing diverse, unnecessary cost and complexity are

inevitably added to operations. Service providers discovered the

new frontier in business competition: “Collaborative

Customization." This approach follows three steps: first to

conduct a dialogue with individual customers to help them

articulate their needs; second, to identify the precise offering

that fulfills those needs; and third, to make customized products

for them. Web services deployed over the Web are accessible to a

wider user base. Web services are designed and contracted to

meet the need of large number of users. Many a times, multiple

customizations of the base functionality is required to cater the

need of multiple set of users. This forces service provider to

deploy multiple Web Services customized for each set of users,

which results in increasing cost of infrastructure and

maintenance. Since, multiple versions of customized Web

Services are deployed multiple times at different URLs, it is

difficult and costlier to maintain, update and backup these

services and their data. The objective of this work is to reduce

the efforts and cost that resulted due to these multiple versions of

the Web Services. We have extended WSDL and WSDL-T to

WSDL-TC that aims at reducing the cost by maintaining the

different collaborative customized versions of operations of the

Web Service in a single deployment. The approach also manages

access control of these operations to their respective groups.

WSDL-TC being an extension of WSDL-T is capable of

managing versions of each customized operation that resulted

due to the changes in their business requirements over a period

of time. WSDL-TC also eases the task of web service

administrators as they have to manage the single instance

instead of multiple instances of a Web service. Moreover,

WSDL-TC based services when deployed in the cloud

environment may help in achieving greater degree of

multi-tenancy further reducing the cost for service producers.

Keywords: Web Services, WSDL, WSDL-Temporal

Customization, WSDL-TC, Web Service Versioning.

I. Introduction

 Web Services have become the proven technology enabling

the implementation of the Service Oriented Computing

(SOC) paradigm. Web Services can be used to develop Web

processes accessible within and across organizational

boundaries. Web Services Description Language Version 2.0

[3] [4] (WSDL 2.0) is a W3C specifications that provides a

model and an XML format for describing Web services.

Although, the WSDL standard has become quite matured,

there are still grey areas in Web services description that need

to be addressed.

One such issue is management and deployment of various

versions [8][16][17] of a Web service that are released over a

period of time as an evolution or maturity process. These

versions are released due to the ever changing demands of the

organizations or due to the users’ feedback. Banati et al. [1]

described that the current specifications for Web service

(WSDL 2.0) provide little coverage on managing these

versions of Web services and extended WSDL to WSDL-

Temporal (WSDL-T). WSDL-T enabled a single Web service

running at a given URI to absorb the changes that occur from

time to time. It also enabled the organization to publish the

change without waiting for them to accumulate. In WSDL-T,

the concept of linear temporal logic [18][19] as well as frame

and slot versioning [5][20] is used for managing changes

across multiple versions of Web service. WSDL-T allowed

access to multiple versions of operations within Web service

from the single URI. WSDL-T introduced two new attributes

for every relevant artifact such as element, operation,

interface, endpoint, service of WSDL viz. validity, timeStamp.

If a change occurs in any element of the Web service resulting

in a new version of an element, a new element is given the

same name appended with the next version number and

appropriate values of validity and timeStamp attributes are set.

Apart from these new attributes the scheme for naming of

element is modified and version number is appended in the

name with the delimiter # e.g. name#x.y.z where x.y.z denotes

the version number according to the user defined version

scheme. Generally, x in version number can be associated with

the versioning at Description element level, y can be

associated as versioning at operation/interface level and z can

be associated at the last level i.e. change in the parameter

mailto:preeti_andc@yahoo.com
mailto:pbedi@cs.du.ac.i

 235 Marwaha et al.

element of an operation. The validity attribute can have any

one value from the validity set {latest, past, deleted,

alwaysTrue} and timeStamp is set to current date time in the

format defined in XML schema [6] [7] data type xs:datetime.

If validity status of any artifact is latest, then it denotes that the

respective artifact is a part of latest version. Validity status

past denotes that recent version of that artifact is already

defined and the validity of that recent artifact is set to latest.

Except recent version, all the old versions will have validity set

to past or deleted. Validity status deleted denotes that, the

particular artifact has been deleted in a new version. Validity

status alwaysTrue denotes that, the artifact will be present in

all the versions of service. The elements with this validity

status form the basic functionality of the service and

contracted as not changeable.

Further, WSDL specifications do not talk much about

customization of Web Service. In the software industry many

software products exist that caters the broad need of various

customers but require customization to meet their complete

requirements. Most of these products like ERP solutions,

mailing solutions, Management Information System (MIS)

exist as web based solutions. These systems need to be

customized and deployed for a particular client/Entity like

companies, organizations etc.

Our approach WSDL-TC [2] enhances the capability of

Web services so that multiple customized Web services along

with their versions that may come over a period of time can be

deployed from a single instance. Moreover in customization,

only a part of the service needs to be modified according to the

client(s) whereas majority of the application (base

functionality) remains unchanged. At present, in a data centre

environment when deploying customized versions of the web

service the whole application is replicated and deployed for

each client i.e. both customized part of the application as well

as part of application which is same for all clients are

replicated and deployed number of times, resulting in

redundancy of common code. This in turn results in increased

cost both in terms of infrastructure and maintenance. Thus it

would be better to maintain a single copy of that part of the

application which is common for all the clients i.e. base

functionality. Our approach allows us to maintain customized

versions of temporally versioned web services from a single

deployment.

The rest of this paper is organized as follows: section 2

discusses the related work with respect to the version strategies

and customization. Section 3 discusses how WSDL-Temporal

(WSDL-T) tackles issues related with change management.

Section 4 describes WSDL-Temporal Customization

(WSDL-TC), an extension over WSDL-T. Annotations for

WSDL-T and WSDL-TC are presented in section 5. A case

study of Front Line Demonstration of crop technology has

been taken in Section 6.Various scenarios that may exist are

presented in section 7, Results and Discussions. Section 8

provides future line of action for our study while Section 9

concludes the paper with merits of the approach.

II. Related Work

Web Services Description Language Version 2.0 (WSDL

2.0) [3], [4] is a W3C specification that provides a model and

an XML [6], [7] format for describing Web services. Brown

[8] discussed and categorized change types made in WSDL

document as backwards-compatible and

on-backwards-compatible changes. For backwards-

compatible changes, the WSDL document can simply be

updated in the repository from which it is made available to

requestors, and the existing Web service may be updated. If

non-backwards-compatible changes need to be made to a

WSDL document, then the changed web service is considered

as completely new web service and deployed at new URL. We

present an approach where all the versions of artifacts are

maintained in a single WSDL document. Both

backwards-compatible or non-backwards-compatible changes

can happen in existing WSDL document and old as well as

new users continue to use the same web service.

Kaminski et al. [9] addressed the problem of simultaneous

deployment of multiple versions of a web service in the face of

independently developed unsupervised clients. They proposed

to use a form of a design technique called chain of adapters to

make version-related reconfiguration tasks safe. Our approach

maintains the versions or changes in different artifacts within

same service and single web service is needed to be deployed

for all the versions of the artifacts. We are using the temporal

logic to access the different versions of artifacts.

Endrei et al. [10] recommend keeping no more than two

concurrent versions of a service running, and envisage a

transition time of three months. They also advocate toggling

the versions between two service URLs. Together with their

other statements, this recommendation implies that they are

assuming a deployment environment much more controlled

than the Internet at large. In comparison to this, our approach

is more flexible and service producer has the capability to

maintain multiple versions. Also, sometimes users prefer to

use the older version over the new one, which is possible with

our approach. If the user wants to switch to the newer version,

he can do that also.

A couple of white papers [11], [8], describe the ways to

design various versions of the web services and issues

involved in it. The works cited above are tackling only

backwards compatible changes and are managing to tackle

incompatible changes by changing the target namespace value

resulting in multiple versions of same web service.

Bechara [12] describes use of a mediation layer for

decoupling the consumer from the provider by using Oracle

Service Bus as a mediation layer. This layer provides the

functionalities of the Layer of Indirection pattern and can be

applied to a variety of versioning tasks such as accessing and

deploying multiple versions of a service provider at the same

time, routing requests to the appropriate service end point

based on the content or the requester, adapting requests and

responses to maintain backward compatibility, deprecating or

retiring services in a graceful manner. This approach makes

versioning tasks a bit easy for both producer and consumer but

the approach requires an additional overhead of maintaining a

mediation layer for version information in addition to multiple

deployments of web service.

Henry Been [13] proposes a lightweight and visible

approach to enrich WSDL files with versioning information

by providing minimal number of tags in an existing WSDL.

Their aim was to make WSDL able to give versioning

information in the easiest manner. Their approach also

encourages consumers to upgrade quickly to the new

version. But our aim is to manage the changes made to web

service in such a way that new as well as old consumers can

continue with the web service without having any overhead.

On specifying the deprecation date the consumer is

encouraged to move to a newer version of that web service but

 WSDL-TC: Temporal Customization of Web Services 236

our approach allows the users to continue to use the older

version or to upgrade to a newer version according to the

consumers wish. Users can continue to use temporally

customised version available for them.

Juric et al. [14] also addressed the problem of versioning of

web services and this version information is reflected in

UDDI. We are providing customization of temporally

available versions and maintaining the information of versions

in a single WSDL-TC file. Since WSDL-TC is containing the

version information of an artifact we are not reflecting this

information in UDDI. So far we have discussed the different

approaches for web service versioning provided by different

authors. We have found few publications that address

Customization of web services at WSDL level. Jian Cao et al.

[15] proposed a model to deal with the challenges of service

customization. In the above approaches for web service

versioning, we have found limited work that addresses the

issue of customized versioning of artifacts according to the

need of the users. In the presented work we enhance WSDL

for Collaborative Customization as well as for change

management. According to this approach user based upon

their needs and demands, can use any version of artifact

customized for them by the service producers. Customers can

also request for an artifact that is customized for some other

Entity. We also provide versioning of artifacts of web services

that are customized for a set of users. Any of the above cited

work is not taking into account versioning of artifacts and

customization simultaneously in a way comparable to the

approach proposed in this paper.

III. Temporal Enhancements to Web Services

through WSDL-T

In the dynamic business world, requirements change quite

often resulting in change in web service. There can be

compatible and incompatible types of changes between two

consecutive versions. Addition of a new operation/interface is

a compatible change whereas modification or deletion of an

operation/interface is incompatible change. There can be one

or more number of such changes. When a compatible change

occurs then the clients accessing the older versions are not

affected and can continue to use older version till they want to

switch to the newer one. On the other hand, if an incompatible

change occurs then the clients accessing the older versions are

affected. At present, whenever an organization makes major

changes, it deploys the new version at some other URI and all

the versions are required to be maintained simultaneously for

providing service to old as well as new clients until all old

clients are migrated to new version or the organization

announces to end the support for the older versions.

Organizations, to the larger extent, have automated the

process of migrating clients from the older versions to the new

version but still it is a cumbersome job at the server side. Also,

some users tend to resist migration to new version unless they

see a major benefit or they are forced to do so. In addition to

this, it is reported [refer old version web site] that many times

the users perceive that the new versions are not better than the

previous one and they switch back to older versions. Yahoo

messenger 7.0 and 7.5.0.647 have over a million downloads

from the “oldversion.com” website after the newer versions

have been launched. Similar statistics are available for some

other popular software. It is also experienced that switching

back to older version is not easy as most of the time it is not

assisted with the automated process. These processes are

developed by the organizations for migrating to new versions

and not for switching back. Moreover, if there is a customized

application developed by the client, that connects to multiple

web services provided by the multiple organizations then it

becomes more difficult to upgrade them within the time frame

dictated by these organization running the multiple versions of

the web services. In view of the above mentioned points and

the demand of specific version from the users forces the

provider of the service to maintain a good number of versions

at the server side. Since, business requirements are ever

changing, so as the change required in the web service

fulfilling those requirements. Another issue related to change

management is the decision of time of release of a new

version. Organizations are forced to wait for the release of

new version of the web service until a sufficient number of

small and big changes accumulate. It is a tradeoff between the

minimum time between two releases of a web service and

number of changes/business requirement. In the present body

of research work, we propose two types of extension:

WSDL-T and WSDL-TC to solve some of the problems

caused by the frequent changes in the web services. WSDL-T

enables a single web service running at a given URI to absorb

the changes that occur from time to time. It also enables the

organization to publish the change without waiting for them to

accumulate.

In the presented work, the concept of linear temporal

logic [19] as well as frame and slot versioning is used for

managing changes across multiple versions of web service.

WSDL-Temporal allows access to multiple versions of

operations within web service from the single URI. WSDL-

T introduces two new attributes for every relevant artifact

such as element, operation, interface, endpoint, service of

WSDL viz.

1. validity

2. timeStamp

Apart from these new attributes the scheme for naming of

element is modified and version number is appended in the

name with the delimiter # e.g. name#x.y.z where x.y.z

denotes the version number according to the user defined

version scheme. Generally, x in version number can be

associated with the versioning at Description element level, y

can be associated as versioning at operation/interface level

and z can be associated at the last level i.e. change in the

parameter element of an operation. The validity attribute can

have any one value from the validity set {LATEST, PAST,

DELETED, ALWAYSTRUE} and timeStamp is set to

current date time in the format defined in XML schema data

type xs:datetime.

LATEST - If validity status of any artifact is LATEST,

then it denotes that the respective artifact is a part of LATEST

version.

PAST - Validity status PAST denotes that recent

version of that artifact is already defined and the validity

of that recent artifact is set to LATEST. Except recent

version, all the old versions will have validity set to PAST

or DELETED.

DELETED - Validity status DELETED denotes that,

the particular artifact has been DELETED in a new

version.

ALWAYSTRUE - Validity Status ALWAYSTRUE

denotes that, the artifact will be present in all the versions

of service. The elements with this validity status form the

 237 Marwaha et al.

basic functionality of the service and contracted as not

changeable.

If a change occurs in any element of the web service

resulting in a new version of an element, a new element is

given the same name appended with the next version number

and appropriate values of validity and timeStamp attributes

are set. If the change occurs at the element level like change

in the number of arguments of an operation, then slot

versioning is implied and only that particular element is added

or deleted. If the change is at operation/interface or at service

level like change in the name of the operation, then frame

versioning is implied and the complete operation/interface or

service is replicated with appropriate validity status along

with time stamp. It is evident that choice of using slot or frame

versioning is left to the designer of the web service according

to the change occurred.

Thus we define WSDL–T an XML based web service

description file that contain following literals

WT = {A, V, v,t}

A {Operation, Port Type, Message, Element}

V= [Name] # [0-9].[0-9].[0-9]....

v

{PAST,LATEST,DELETED,ALWAYSTRUE}

t = valid Date-Time

Where “A” is an artifact name, “V” denotes a version

number associated with each artifact. Validity “v” and

Time-stamp “t” is also included to each artifact. Validity and

Time stamp will change as the changes occur in the artifact.

In this section, we discuss different type of changes and how

WSDL-Temporal tackles them.

Addition of a new operation: The most frequent change

in web service is addition of new operations. This is a

compatible change and does not affect the existing clients to

access the new version of web service as all the older

operations are still supported by the web service. In WSDL-

Temporal, the new operation is given the same name as the

current one with a version number appended to it and its

validity status is set to LATEST and timeStamp set to

current value of date time.

Deletion of an existing operation: In this case one or

more no. of existing operations has been deleted from the

current version to generate the new version. In our

approach, the operation to be deleted will be replicated

and the new element will have validity set to DELETED

and timeStamp set to current date and time and version no.

set to next version no. i.e. name#x.op+1.z. The validity

status of existing operation will be changed to PAST from

LATEST. Change the name of operation: This change is

equivalent to the addition of a new element and deletion of

existing element. The new element will be added with the

validity set to LATEST, timeStamp as current date and time

and version no. set to name#d.1.0. The existing element to

be deleted will be tackled as explained above.

Complete change in Web service: Over a period of time

the web service has substantial number of new elements,

numbers of existing operations are DELETED, number of

parameters of remaining existing functions are changed

either in data types or in number but it performs same

business functions as the previous one. This can be done by

versioning Description element. The scheme for versioning

at description level is at the top level i.e. first part after #

sign name#x.0.0. For example: name#1.0.0., name#2.0.0.

The description block will be replicated above the existing

description block and all the elements/operations/interfaces

contained in it will have validity attribute set to LATEST or

ALWAYSTRUE and timeStamp attribute set to current time

stamp with version number set to name#x.0.0. WSDL-

Temporal allow old clients to continue to use the older

version of element/operation/interface within a web service

without upgrading to the newer version of the element or

operation whereas new clients have an option to choose

among different versions according to their preferences. If

old clients wish to upgrade to the newer version, they can do

so. It is also evident that over a period of time no. of small

changes will accumulate and there will be need to

accumulate all small changes into next release of the Web

service. Description versioning will be helpful in merging

all these changes and combining them into the next version.

(a)

(b)

Figure 1. Sample pseudo-schema of WSDL and

WSDL-Temporal

WSDL 2.0 provides BNF Pseudo-Schemas for each of its
component. They use BNF-style conventions for attributes
and elements: “?” denotes optionality (i.e. zero or one
occurrences), “*” denotes zero or more occurrences, “+” one
or more occurrences, “[” and “]” are used to form groups, and
“|” represents choice. Attributes are conventionally assigned a
value which corresponds to their type, as defined in the
normative schema. Elements with simple content are
conventionally assigned a value which corresponds to the type
of their content, as defined in the normative schema.
Following is the BNF pseudo schema of WSDL2.0 and
WSDL –Temporal. We have introduced two new attributes of
type string for each valid element. The WSDL-Temporal
follows the syntax defined by BNF pseudo-schema in Figure
1.

In Table 1, Ai denotes the artifact such as

element/operation/interface, V
ti

denotes the version of
element/operation/interface at timeStamp ti. According to the
change, the validity status of the Ai can be set to LATESTti,

PASTti or DELETEDti at timeStamp ti.

 WSDL-TC: Temporal Customization of Web Services 238

Table 1. Validity status of Various Versions of Artifact

Let’s assume V
t1

is the current version and A0 is present in

version V
t1

 with validity of A0 set to LATEST at timeStamp t1.

At timeStamp t2, there is a change of type addition and as a

result A1 is added at time stamp t2 in version V
t2
. Thus the

validity status of A2 is set to LATEST at t2 whereas A1 is not

changed. At timeStamp t3, two changes occur in version V
t3

.

First change is addition of E2 and second change is deletion of

A1. Thus validity status of A1 is set to DELETED at timeStamp

t3 and validity status of E1 is set to PAST at timeStamp t2. A2

is set to LATEST at timeStamp t3 whereas A0 is not changed in

version V
t3

.

WSDL-Temporal allow old clients to continue to use the

older version of an artifact within a web service without

upgrading to the newer version of the element or operation

whereas new clients have an option to choose among different

versions according to their preferences. If old clients wish to

upgrade to the newer version, they can do so. It is also evident

that over a period of time number of small changes will

accumulate and there will be need to accumulate all small

changes into next release of the Web service.

IV. Temporal Customization of Web Services

through WSDL-TC

Traditionally, each customized version of a web service is

treated as a different web service and is deployed separately.

In this section, we extend WSDL-T to WSDL-TC, through

which it is possible to customize temporal web service for

multiple Entities running from a single Web service

instance. Here, an Entity denotes the set of users with same

requirements. An Entity may also be a set of users

categorized on the basis of access rights/privileges assigned

to them. WSDL-TC based web service allows all customized

versions of operations to be run or deployed at single URL.

By using this customization approach in WSDL-T it is

possible to customize any valid version of the artifact,

available at a particular time for any client. High degree of

configurability, enable Entities to create their own workflow

within the service. The approach also isolates and maintains

security among various Entities so that an Entity cannot

have access to the operations not authorized for them.

We have introduced a <customization> tag in the

WSDL-TC, that contains one or more <Entity> tag(s), which

specify the Entities/clients for whom temporal web services

are customized. The name attribute in the <Entity> tag can

be any qualified name and the value attribute in the

<Entity> tag can be assigned with the user defined Entity

name. The user defined Entity name assigned to the value

attribute is used to create logical bundle of artifacts for a

particular Entity. Figure 2 shows the customization tag

appears in the beginning of the WSDL-TC file just after the

Description and Documentation tags.

<wsdltc:customization>

<wsdltc:Entity name=”anyQualifiedName” value=

“Entityid1” validity = “latest|past|alwaysTrue|Deleted”

timestamp=”date-time” />

<wsdltc:Entity name=”anyQualifiedName” value=

“Entityid2” validity = “latest|past|alwaysTrue|Deleted”

timestamp=”date-time” />

..

.</wsdltc:customization>

Figure 2. WSDL-TC Customization Tag

The artifacts that need to be customized can have one or

more <EntitySet>tags defined in their scope. EntitySet refers

to the collection of Entities that share same customization. The

<EntitySet> tag should have one<Entity> tag defined directly

in its scope. This <Entity> defines a primary Entity. The

<Entity> tag contains the required set of elements of WSDL

that are usually defined in that artifact e.g. Input, Output,

Outfault etc. in Operation artifact.

If a customized artifact is required by multiple entities then

one can assign the same artifact to them without redefining

it. This can be achieved by <AlsoApplicableTo> tag defined

under <EntitySet> tag. The <AlsoApplicableTo> tag

comprises of one or more <Entity> tag(s), which define the

Entities for which the customized artifact is available, these

<Entity> tag(s) defines secondary entities. Figure 3 shows

the snippet of WSDL-TC where operation named

“op1#1.0.0” is first defined for certain group of users, which

we called the “base function”. Then we have customized the

same operation for Entity “Entity1” (primary Entity) which is

made a part of EntitySet “S1”.The same customization is

needed by other Entities “Entity2” and “Entity3” then these

two entities are made a part of same EntitySet. Here, we will

define two <Entity> tags under <AlsoApplicableTo> tag for

entities “Entity2” and “Entity3” respectively (secondary

entities). Code under the scope of an artifact but not under the

scope of any <EntitySet> tag is noncustomized version of the

artifact and is called a “base function” which is available to all

the entities except entities who have defined their own

customization(s). It also means that the tags introduced by

WSDL-TC are only applicable for customization and

versioning and WSDL-TC converges with WSDL for

normal usage. This customization can be achieved for

different artifacts. Here we are limiting till operation level.

Artifacts that are not customized for any Entity are

accessible to all the entities. Each Entity in this way has a sum

of common artifacts a well as customized artifacts to meet its

requirements.

The artifacts that need to be customized can have one or

more <EntitySet> tags defined in their scope. EntitySet

refers to the collection of Entities that share same

customization. The <EntitySet> tag should have one <Entity>

tag defined directly in its scope. This <Entity> defines a

primary Entity. The <Entity> tag contains the required set of

elements of WSDL that are usually defined in that artifact e.g.

Input, Output, Outfault etc. in Operation artifact. If a

customized artifact is required by multiple Entities then one

can assign the same artifact to them without redefining it.

This can be achieved by <AlsoApplicableTo> tag defined

under <EntitySet> tag. The <AlsoApplicableTo> tag

comprises of one or more <Entity> tag(s), which define the

 A0 A1 A2

V
t1

 Latestt1

V
t2

 Latestt1 Latestt2 ->Pastt3

V
t3

 Latestt1 Deletedt3 Latestt3

 239 Marwaha et al.

Entities for which the customized artifact is available, these

<Entity> tag(s) defines secondary entities. Figure 3 shows the

snippet of WSDL-TC where operation named “op1#1.0.0” is

first defined for certain group of users, which we called the

“base function”. Then we have customized the same operation

for Entity “Entity1” (primary Entity) which is made a part of

EntitySet “S1”.The same customization is needed by other

Entities “Entity2” and “Entity3” then these two entities are

made a part of same EntitySet. Here, we will define two

<Entity> tags under <AlsoApplicableTo> tag for entities

“Entity2” and “Entity3” respectively (secondary entities).

Code under the scope of an artifact but not under the scope of

any <EntitySet> tag is non-customized version of the artifact

and is called a “base function” which is available to all the

entities except entities who have defined their own

customization(s). It also means that the tags introduced by

WSDL-TC are only applicable for customization and

versioning and WSDL-TC converges with WSDL for normal

usage. This customization can be achieved for different

artifacts. Here, we are limiting till operation level. Artifacts

that are not customized for any entity are accessible to all the

entities. Each entity in this way has a sum of common artifacts

a well as customized artifacts to meet its requirements.

Definition: A WSDL–TC is defined as an XML file that

contain following literals to describe temporally customized

web services.

WTC = {A, V, v, t, S}

A {Port Type, Operation, Message, Element}

V= [Name] # [0-9].[0-9].[0-9]....

v {PAST , LATEST , DELETED, ALWAYSTRUE}

t = valid Date-Time

S= {PE}U{SE}

Where “A” is an artifact name, “V” is a version

number which is associated with each artifact. Validity

“v” and Time-stamp “t” is also appended to each artifact.

“S” denotes the EntitySet which is union of Primary

Entity (PE) and secondary Entities (SE).

Figure. 3. Customization of Operation in WSDL-TC

 WSDL-TC: Temporal Customization of Web Services 240

Figure. 4. Proposed Java Annotation

V. Annotations of WSDL-T and WSDL-TC

To implement proposed extensions to WSDL, we have

proposed modifications in annotations specified in JSR181 for

WebService, WebMethod, WebParam and WebResults to

associate validity and timeStamp to the artifacts of the web

service (Figure 4). Two new members timeStamp() and

validity() are added. Validity can have one of the following

values: Validity.LATEST, Validity.PAST,

Validity.DELETED, Validity.ALWAYSTRUE. The default

assigned value is Validity.LATEST. The timeStamp is

assigned a valid date- time value. We have defined new

annotations WebserviceTC, WebMethodTC, WebResultTC

and WebParamTC for change management and we have

defined annotations EntitySet, Entity and AlsoApplicableTo

to support the customization as defined in WSDL-TC. In

EntitySet, we have declared a nested annotation of type Entity

to define a primary Entity for whom the customization is

required. In AlsoApplicableTo annotation, we have declared

an array of annotation Entity for all the secondary entities who

share the same customization as that of primary Entity. We

have developed a WSDL-TC writer, which can read

annotations from java based web services and generate

corresponding WSDL-TC file. Figure 5 shows the structure of

java web services which uses annotations to define temporally

customized artifacts of a service. The meta data in the

annotations give the information regarding the version,

validity, timeStamp, EntitySet, Entities (Primary as well as

secondary) related to the artifact of a web service. Figure 6

shows the corresponding WSDL-TC schema generated for the

above mentioned java web service format supporting

temporal customization.

 241 Marwaha et al.

Figure. 5. Java Web Services Format supporting Temporal Customization

Figure. 6. WSDL-TC Structure

 WSDL-TC: Temporal Customization of Web Services 242

 Figure. 7. WSDL-TC snippet for FLD Services

Figure 8. Java code snippet for FLD Web Service

VI. Case Study

We have implemented WSDL-TC web services for FLD

(Frontline Demonstration) for different crops like Maize,

Rice, Wheat etc. Frontline Demonstration is a participatory

research, emphasizing scientist-farmer interaction, refining

and validating research findings, developing leadership

amongst farmers for multiplier effect to horizontally

disseminate technology. The FLDs provide an effective

learning situation as the farmers observe the technologies,

practice it and interact with the scientists and extension

functionaries. It is very necessary to record the observation

and get the feedback from the farmers and the extension

workers for all the FLD experiments. It also helps in

analyzing the FLD experiment as well as FLD program as a

whole. Since, the Internet connectivity is not readily available

at farmers’ field, so a Web service based approach is used for

collecting the data from the Maize farmers’ field. Also, FLD

performas’ tend to change a bit over time and for different

crops, so a new approach based on WSDL-Temporal

Customization Web Service has been proposed in this work.

The data and feedback collection system has been designed

using WSDL-TC based Web service architecture.

Initially, we designed web service and their clients for

FLD for Maize which we called as Base function. This

function is non-customized function which is available to all

the clients of this web service. Then we extended our work for

FLD for Rice crop. There we need to incorporate some

changes according to new crop. Thus, we modified some

operations of the existing service and its clients resulting in a

new customized version of an artifact within the same service.

With time some functionality of FLD for Maize crop changes,

which resulted in a new version of the operation in the service.

Now, two versions of operation FLD for maize exist and the

base function is also customized for FLD for Rice crop. FLD

for wheat is exactly same as FLD for Rice thus same operation

can be accessed for wheat FLD. Hence, Wheat FLD now

becomes the secondary Entity and we put it within

 243 Marwaha et al.

alsoApplicableTo tag (shown in Figure 5). Figure 6 is the

corresponding java code for WSDL-TC based web service.

Figure 9. Average Response Time of WSDL,WSDL-T and

WSDL-TC

Figure 10. Throughput of WSDL,WSDL-T and WSDL-TC.

Using Apache Jmeter, we have run and compared the

throughput and average response time (for different number

of concurrent requests) of the standard web service with our

temporal and temporally customized web services and

reached to a conclusion that response time and the throughput

of both WSDL-T and WSDL-TC are comparable to WSDL

as shown in Figure 9 Figure 9 shows that in the initial phase

as the number of concurrent users are increased the average

response time increased gradually. Later on as number of

users crossed the maximum load capacity limit of the server,

the average response time increased proportionately. The

experiment shows that WSDL and WSDL-T/TC behaved in

similar fashion, although the WSDL-T/TC showed a little

improvement especially in the region of maximum load

capacity. This is due to the fact that till the system resources

are available, the user requests are served up to the

satisfaction levels. After saturation level is reached and

there are no more resources left, more number of users are

put to wait state. So, the average response time rises

sharply.

The second graph in Figure 10 shows that although the

average response time increases sharply after a point, the

throughput increases initially and remains almost constant

afterwards. Thus, the graphs in Figure 9 and Figure 10

show that WSDL-T/TC do not degrade the average

response time or throughput and the overhead required to

process the multiple versions is minimal. It means that

when WSDL-TC based web services are deployed, the

service producers may deploy multiple versions for their

multiple clients from a single instance. This in turn has a

clear reduction in terms of infrastructure requirements as

number of instances per service is reduced to one. Man

power requirements for managing and taking back-up of

multiple versions are also reduced because there is only

single instance per service is required to be deployed. It also

allows ease in patch management as the security patches or

bug fixing in the non-customized and non-versioned segment

of the web service is required to be done at a single place

rather than in all the versions.

VII. Results and Discussion

WSDL-T and WSDL-TC allows us to maintain temporal

and temporally customized version of the timeStamp of a

web service. In this section, we show the various scenarios

that are tackled over time in WSDL-T and WSDL-TC file.

In Table 2, first column details the scenario at a particular

time tm and also discusses its solution. Second column

shows the operations available in the service along with

their validity and timeStamp Status. Oi#vj(V, T) denotes j
th

version of ith operation with validity V and timeStamp T.

V={P|D|A|L} and T=date and time value.

The WSDL-TC allows customization of artifacts for multiple

entities. It means that both customization and versions

brought out by these entities are considered. Case Scenarios of

WSDL-TC are discussed in Table 3.

Table 2. WSDL-T Case Scenarios

Solution Description Operation#version_num(validity,timeStamp)

Scenario: At time t0 initial version of all operations {O1 ,O2, O3 }exist.

This is the initial version of web service with validity and
timeStamp.

{ (O1#v1)L, t0 , (O2#v1)L,t0, (O3#v1)L,t0 }

Scenario: At time t1 new Operation On is added.
Now first version of a new operation is added with validity
LATEST and timeStamp t1.

{(O1#v1)L, t0 , (O2#v1)L,t0, (O3#v1)L,t0 , (On#v1)L,t1}

Scenario: At time t2, version v1 of operation O1 is to be modified to a new version i.e. version v2 of operation O1.

 WSDL-TC: Temporal Customization of Web Services 244

Since operation O1 is modified, the validity of version v1 of
operation O1 is set to PAST and new version v2 of operation
O1 is added with LATEST validity and timeStamp t2.

{(O1#v1)P, t0 , (O2#v1)L,t0, (O3#v1)L,t0 , (On#v1)L,t1,

(O1#v2)L, t2 }

Scenario: At time t3 a new operation with validity ALWAYSTRUE is added.
Validity of operation O4 is set to ALWAYSTRUE therefore

this operation will always available and no further
modification is allowed to it.

{(O1#v1)P, t0 , (O2#v1)L,t0, (O3#v1)L,t0 , (On#v1)L,t1, (O1#v2

)L, t2,(O4#v1)A, t3 }

Scenario: At time t4, operation O3 is deleted
A same new version of the operation i.e. O3#v2 is created

with timeStamp t4 and the validity status is set to DELETED
and timeStamp set to t4 whereas validity status of EntitySet
O3#v1 is changed to PAST.

{(O1#v1)P, t0 , (O2#v1)L,t0, (O3#v1)P,t0 , (On#v1)L,t1, (O1#v2

)L, t2,(O4#v1)A, t3, (O3#v2)D,t4 }

Table 3. WSDL-TC Case Scenarios

Solution Description Parts of Operation EntitySet Entity

Scenario: At time t0 version v1 of operation O1 exists for all the users.

This is the base functionality defined before

customization and is as per the specifications of

WSDL.

O1#v1 (L, t0)

Scenario: At time t1 Entity E1 wants to customize version v1 of operation O1.

Version v1 of Entity i.e. E1#v1 within version v1 of
EntitySet i.e. S1#v1 is created within the scope of
O1#v1 with timeStamp t1. Now, we have base
functionality defined within O1#v1 followed by
customized functionality for Entity E1 contained in
EntitySet S1. So, O1#v1 is transformed to (O1#v1)S1.

O1#v1 (L,t0)

(O1#v1)S1 (L, t1) S1#v1 (L, t1) E1#v1 (L, t1)

Scenario: At time t2 version v1 of operation O1 which is already customized for Entity E1, is required by Entity E2 without

any change.

Since, the customization done in (O1#v1)S1 also

applies to E2, E2#v1 i s defined with timeStamp t2

within same EntitySet S1 under the

AlsoApplicableTo tag. Thus same operation

denoted by (O1#v1)S1 is available to both E1 and E2.

O1#v1 (L,t0)

(O1#v1)S1 (L, t1) S1#v1 (L, t1) E1#v1 (L, t1)

E2#v1 (L, t2)

Scenario: At time t3, another Entity E3 wants its own customization for the version v1 of operation O1.

Version v1 of Entity i.e. E3#v1 within version v1 of

EntitySet i.e. S2#v1 is created within the scope of

O1#v1 with timeStamp t3. So, (O1#v1)S1 is

transformed to (O1#v1)S2 .

O1#v1 (L ,t0)

(O1#v1)S1 (L, t1) S1#v1 (L,t2) E1#v1 (L,t2)

E2#v1(L,t2)

(O1#v1)S2(L,t3) S2#v1(L,t3) E3#v1 (L,t3)

Scenario: At time t4, version v1 of operation O1 is to be modified to a new version i.e. version v2 of operation O1.

Since, the base functionality has changed new

version O1#v2 of operation O1 is created with

timeStamp t4. E1,

O1#v1 (P,t0)

E2 and E3 continued to use their same old
customized operations. Validity status of O1#v1 is

(O1#v1)S1(L, t1) S1#v1(L,t2) E1#v1(L,t2)

 245 Marwaha et al.

now changed to PAST. E2#v1 (L,t2)

(O1#v1)S2 (L ,t3) S2#v1 (L ,t3) E3#v1 (L ,t3)

O1#v2(L,t4)

Scenario: At time t5, Entity E2 wants its own customization of operation O1 whereas Entity E1 continues to use its

customized version.
A new EntitySet S3#v1 with new version E2#v2 of the

Entity E2 is created with timeStamp t5 and validity

status LATEST within the scope of LATEST version

of O1 i.e. O1#v2. So, EntitySet S1#v1 in O1#v1

contains E1#v1 along with Entity E2#v1 with validity

status changed to PAST.

O1#v1 (P,t0)

(O1#v1)S1 (L, t1) S1#v1 (L,t2) E1#v1 (L,t2)

E2#v1(P,t2)

(O1#v1)S2 (L,t3) S2#v1 (L,t3) E3#v1 (L,t3)

O1#v2 (L,t4)

(O1#v2)S3(L,t5) S3#v1(L,t5) E2#v2(L,t5)

Scenario: Entity E3 wants new customization of operation O1 altogether.

A new version of the Entity E3#v2 is created with
timeStamp t6 within the scope of EntitySet S2 and the
validity status set to LATEST whereas validity status
of Entity E3#v1 is changed to PAST.

O1#v1(P ,t0)

(O1#v1)S1 (L, t1) S1#v1 (L,t2) E1#v1 (L,t2)

E2#v1(P,t2)

(O1#v1)S2 (L,t3) S2#v1 (L,t3) E3#v1 (P,t3)

O1#v2 (L,t4)

(O1#v2)S3 (L,t5) S3#v1 (L,t5) E2#v2 (L,t5)

(O1#v1)S2(L,t3) S2#v1(L,t3) E3#v2(L,t6)

Scenario: Entity E3 does not want to continue the use of the operation O1 or decided to use the latest base functionality.

A same new version of the EntitySet S2 i.e. S2#v2 and

Entity E3#v2 is created with timeStamp t6 and the

validity status is set to DELETED whereas validity

status of EntitySet S2#v1 and Entity E3#v1 is changed

to PAST.

O1#v1 (P,t0)

(O1#v1)S1 (L, t1) S1#v1 (L, t 2) E1#v1 (L,t2)

E2#v1 (P,t2)

(O1#v1)S2(P,t3) S2#v1(P,t3) E3#v1(P,t3)

O1#v2(L,t4)

(O1#v2)S3 (L,t5) S3#v1 (L,t5) E2#v2 (L,t5)

(O1#v1)S2 (P,t3) S2#v2 (P,t3) E3#v2 (P,t6)

(O1#v1)S2 (D,t7) S2#v2 (D,t7) E3#v2 (D,t7)

 WSDL-TC: Temporal Customization of Web Services 246

VIII. Future Work: WSDL-TC in

Multi-Tenant Scenario

At present Data multi-tenancy is the most explored approach

under multi-tenancy, and is often implemented on top of a

database. Both Jacobs et al.[21] and Chong et al. [22] have

outlined three main approaches for data management in a

multitenant deployment: separate databases, shared database

with separate schemas and shared database with shared

schemas. Among these, the separate database approach gives

each tenant its own database, the shared database with

separate schema approach gives each tenant its own tables,

and in the shared database with shared schema approach

shares the same table among many tenants and enforces

security at the next layer in the architecture. They make a

continuum where more isolation means less sharing & less

scalability and vice versa. Chong et al. [22] in one of the

discussions of multitenant applications, have proposed a

maturity model where higher numbers indicate higher level of

resource sharing. For instance, level 1 provides an instance

per tenant, level 2 provides a configurable instance per tenant,

level 3 runs a single instance that serves all customers, and

finally, level 4 enables level 3 to scale up by running multiple

instances and load balancing to scale it up. Guo et al. [23]

categorize multi-tenancy as single instance vs. multiple

instance, where the former serves many users using the same

instance whereas the latter serves users by running multiple

instances using one of the aforementioned methods. Azeez et

al. [24] designed and implemented multitenant SOA platform

which allows users to run their current applications in a

multi-tenant environment with minimal or no modifications.

Configurability is provided through a management portal and

via server-side tenant specific customizations. All the above

cited work is based on WSDL and trying to achieve

multi-tenancy by introducing new layers above WSDL. Our

approach enhances WSDL to WSDL-TC for supporting

multiple collaborative customization of a service that can be

executed from a single instance which is in fact essence of

multitenant concept. We believe that WSDL-TC will be

helpful in achieving higher degree of multi-tenancy specially

when taken together with the above said approaches such as

defined by the Azeez et al. [24] The use of WSDL-TC in

multitenant environment will also help in deploying multiple

versions of the service customized for multiple set of users

from a single instance. As part of the future work of this paper

we will verify and study effects of WSDL-TC in multitenant

cloud environment.

IX. Conclusion

Today, with every computer and potentially every

application connected to Internet, there are increased

requirements for interconnected and interdependent

business-to-business applications that can facilitate business

over the Internet. In a fast changing economy, the nature of

business relationships constantly changes. Reorganization,

mergers, and new business partnerships are relentlessly

negotiated resulting in change in the business applications.

The service oriented architecture ensures building dynamic,

highly scalable and interoperable web applications. WSDL

2.0 is the present specifications for developing web services

and has covered little on the change management and

customization. In the presented work, WSDL has been

extended to WSDL-TC. By using WSDL-TC, it is possible

to customize any valid version of the artifact, available at a

particular time for any client. This enables to create

customized functionality within a service for each Entity

(set of users). One of the main advantages of this approach is

operational benefit. Because all application code is in one

place, it is much easier and cheaper to maintain, update and

backup the service and its data. Also, in case of WSDL, if a

patch is required to be applied for any bug fixing or security

management then it needs to be applied at all the

deployments making the process time consuming and extra

efforts are required. Here, if the patch is in the operations that

are not changed or customized then it needs to be applied at a

single location irrespective of number of Entities that are

using the service. Another advantage is the overall lower

system resources required for running the single deployment

as compared to multiple deployments. It is not necessary to

have a dedicated version of the service resources and

infrastructure for every Entity (set of users). This is a clear

improvement in resources utilization, saves time and lowers

overall cost. A case study on Front Line Demonstration has

been implemented using WSDL-TC and it has been shown

that the performance of WSDL and WSDL-TC based

services are comparable with the additional benefits

delivered by the WSDL-TC.

References

[1] H. Banati, P. Bedi, P. Marwaha. “WSDL-Temporal: An

approach for change management in Web Services”. In

Proceedings of the IEEE International Conference on

Uncertainty Reasoning and Knowledge Engineering, pp.

44-49, 2012.
[2] H. Banati, P. Bedi, P. Marwaha. “WSDL-TC:

Collaborative customization of Web Services”. In
Proceedings of the IEEE International Conference on
Intelligent System Design and Applications (ISDA), pp.
692-697, 2012.

[3] D. Booth, C. K. Liu. “Web Services Description

Language (WSDL) Version 2.0 Part 0: Primer”. W3C

Recommendation, Available from:

http://www.w3.org/TR/2007/REC-

wsdl20-primer-20070626, 2007.

[4] R. Chinnici, J. J. Moreau, A. Ryman, S. Weerawarana.

“Web Services Description Language (WSDL) Version

2.0 Part 1: Core Language”.W3C Recommendation,

Available from: http://www.w3.org/TR/2007/

REC-wsdl20-20070626, 2007.

[5] P. Bedi, K.D. Sharma, S. Kaushik. “Time dimension to

frame systems”. Journal of Information Science and

Technology, II (3), pp. 212-228, 1993.

[6] P. V. Biron, A. Malhotra. “XML Schema Part 2:

Datatype”. W3C Recommendation, Available from:

http://www.w3.org/

TR/2002/WD-xmlschema-2-20010502/, 2007.

[7] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler,

F.Yergeau. “Extensible Markup Language (XML) 1.0

(Fourth Edition)”. W3C Recommendation, Available

from:

http://www.w3.org/TR/2006/REC-xml-20060816/,

2006.

[8] K. Brown, M. Ellis. “Best practices for Web services

versioning”. Available from: http://www.ibm.com

/developerworks/webservices/library/ws- version, 2004.

http://www.w3.org/TR/2007/
http://www.w3.org/TR/2007/

 WSDL-TC: Temporal Customization of Web Services 247

[9] P. Kaminski, M. Litoiu H. Muller. “A design technique

for evolving web services”. In Proceedings of the

Conference of the Center for Advanced Studies on

Collaborative Research, pp. 211-222, 2006.

[10] M. Endrei, M. Gaon, J. Graham, K. Hogg, N.

Mulholland. “Moving forward with Web services

backwards compatibility”. Developer-Works, Available

from:

http://www-128.ibm.com/developerworks/java/library/

ws- soa-backcomp/index.html?ca=drs-#resources, 2006.

[11] D. Parachuri, S. Mallick. “Service Versioning in SOA”.

Available from:

http://www.infosys.com/consulting/soa-services/white-p

apers/Documents/service-versioning-SOA1.pdf, 2007.

[12] G. Bechara. “Web Services Versioning”. Oracle

Technology Network, Available from:

http://www.oracle.com/technetwork/

articles/web-services-versioning-094384.html, 2008.

[13] H. Been. “Extending WSDL with versioning

information”.In Proceedings of the 14th Twente Student

Conference on IT, Available from:

http://referaat.cs.utwente.nl/conference/14/paper

/7221/extending-wsdl-with-versioning-information.pdf,

2011.

[14] M. Juric, A. Sasa, B. Brumen I. Rozman. “WSDL and

UDDI extensions for version support in web services”.

Journal of Systems and Software, LXXXII(8),

pp.1326-1343, 2009,.

[15] J. Cao, J. Wang, K. Lawb, S. Zhang, M. Li. “An

Interactive service customization model”. Journal of

Information and Software Technology, XLVIII(4), pp.

280-296, 2009.

[16] T. Erl, A. Karmarkar, P. Walmsley, H. Haas, U.

Yalcinalp, C.K. Liu, D. Orchard, A. Tost, J. Pasley. Web

Service Contract Design & Versioning for SOA, Prentice

Hall, 2008.
[17] J. Evdemon. “Principles of Service Design: Service

Versioning”. http://msdn.microsoft.com/en-
us/library/ms954726.aspx, 2005.

[18] J.F. Allen, “Maintaining Knowledge about Temporal
Intervals”. Communications of the ACM, XXVI,
pp.832-843, 1983.

[19] J.F. Allen, “Actions and Events in Interval Temporal
Logic”. Journal of Logic and Computation, 4, pp.
531-579, 1994.

[20] P. Bedi. “A Unified Approach for Designing
Frame-Based Systems”. Ph.D. Dissertation, Dept. of
Computer Science, University of Delhi, 1999.

[21] D. Jacobs, S. Aulbach. “Ruminations on multi-tenant
databases”. In Proceedings of BTW, 2007.

[22] F. Chong, G. Carraro, R. Wolter. “Multi-Tenant Data
Architecture”. MSDN Library, Microsoft Corporation,
2006.

[23] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, B. Gao. “A
Framework for Native Multi-Tenancy Application
Development and Management”. In Proceedings of the
9th IEEE International Conference on E-Commerce
Technology and The 4th IEEE International Conference
on Enterprise Computing, E-Commerce and E-Services
(CEC-EEE 2007), pp. 551-558, 2007.

[24] A. Azeez, S. Perera, D. Gamage, R. Linton, P.
Siriwardana, D. Leelaratne, S. Weerawarana, P.
Fremantle. “Multi-Tenant SOA Middleware for Cloud
Computing”. In Proceedings of IEEE 3rd International

Conference on Cloud Computing, pp. 458-465, 2010.

Author Biographies

Preeti Marwaha is a Ph.D. scholar in the

Department of Computer Science, University of
Delhi. She is an Assistant Professor in the

Department of Computer Science, A.N.D. College,

University of Delhi. Her research interest includes
Web Services and Composite Web Services,

Semantic Web Services etc.

Dr. Hema Banati completed her Ph.D. (2006) after

her Masters in Computer Applications(M.C.A) both
from Department of Computer Science, University

of Delhi, India. At present she is an Associate

Professor in the Department of Computer Science,
Dyal Singh College, University of Delhi. She has

over 18 years of teaching experience to both

undergraduate and postgraduate classes. Over the
past decade she has been pursuing research in the

areas of Web engineering, software engineering,

Human Computer Interaction, Multi-agent systems,
E-commerce and E-learning. She has many national

and international publications to her credit.

Dr. Punam Bedi received her Ph.D. in Computer
Science from the Department of Computer Science,

University of Delhi, India in 1999 and her M.Tech.

in Computer Science from IIT Delhi, India in 1986.
She is an Associate Professor in the Department of

Computer Science, University of Delhi. She has

about 24 years of teaching and research experience
and has published about 100 papers in National /

International Journals / Conferences. Dr. Bedi is a

member of AAAI, ACM, senior member of IEEE,
and life member of Computer Society of India. Her

research interests include Web Intelligence, Soft
Computing, Semantic Web, Multi-agent Systems,

Intelligent Information Systems, Intelligent Software

Engineering, Intelligent User Interfaces,
Requirement Engineering, Human Computer

Interaction (HCI), Trust, Information Retrieval and

Personalization.

http://www-128.ibm.com/developerworks/java/library/ws-
http://www-128.ibm.com/developerworks/java/library/ws-
http://referaat.cs.utwente.nl/conference/14/paper/7221/extending-wsdl-with-versioning-information.pdf
http://referaat.cs.utwente.nl/conference/14/paper/7221/extending-wsdl-with-versioning-information.pdf
http://msdn.microsoft.com/en-

