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Abstract — A genetic algorithm (GA) based approach for 

reliability placement of phasor measurement units (PMUs) in 

smart grid is proposed. The algorithm combines two 

conflicting objectives which are maximization of the reliability 

of observability and minimization of the number of PMU 

placements for ensuring full system observability. The multi-

objective problem is formulated as a nonlinear optimization 

problem and genetic algorithm approach is employed for 

solving the large scale bus systems.  The optimization model is 

solved for IEEE 14, 30, 57, 118, and 2383 standard bus systems.  

The effectiveness of the proposed approach has been 

demonstrated by comparing results with exact algorithms for 

smaller problem sizes. The results suggest that by employing 

genetic algorithm, the system reliability of observability is 

improved by approximately 48% as compared to traditional 

optimal PMU placement. According to results, the proposed 

approach achieve significant cost savings (~17%-~50%) 

compared to available reliability based models in literature.     

Keywords-Genetic algorithm (GA); multi-objective 

optimization; nonlinear programming; phasor measurement 

units (PMUs); reliability modeling 

I.  INTRODUCTION 

The Wide Area Measurement System (WAMS) has 

become the most important part of the electrical power 

network monitoring, control and security nowadays [1]. 

Secure monitoring and control of the smart grid has been 

significant since failures such as loss of generation, 

transmission line outages or metering failures could turn in 

to blackouts and cascade tripping. Reliability and robustness 

of the WAMS is highly crucial since the security of the 

smart grid highly depends on it where a reliable WAMS can 

prevent smart grid from turning into cascade tripping and 

blackouts. Phasor Measurement Units as state estimator 

devices provide Global positioning System (GPS) based 

time synchronized measurement of current and voltage 

phasors in power network [1]. This feature of time stamped 

state estimation via signals from GPS satellite transmission 

makes the PMUs as the key elements of WAMS [2, 3].  

A bus is an electrical conductor, which serves as a 

conducting pathway for continuous connection of the loads 

and the sources of electric power between different parts of 

a power grid. Transmission between buses is made through 

lines in the network. A bus is called observable when the 

voltage phasor at that bus is estimated and the power system 

is called to be observable if the measurement sets and their 

distributions are sufficient for solving the current state. 

PMU placement at a given bus potentially allows 

measurement of the voltage phasor at that bus and current 

phasors of all lines that are incident to the bus. Availability 

of the voltage phasor of a bus and the entire incident line 

currents, the voltage phasor at adjacent buses can be 

calculated using the Ohm’s law. Therefore, the presence of a 

PMU on a bus makes that particular bus and all of its 

immediate neighboring busses observable [4, 5]. The use of 

PMUs at each bus leads to a simplified linear state estimator 

[6]. Hence, addition of the PMU at all strategic buses in the 

power network allows direct measurement of the state of the 

network [4, 5]. Therefore a network can potentially be 

observable with a lesser number of PMUs than the number 

of buses. As a result, the PMU placement problem concerns 

with achieving the entire network observability with the 

minimum possible cost through placement of the minimum 

number of PMUs on strategic locations.  

Several algorithms for PMU placement problem developed 

in the literature considering full network observability. A 

generalized integer linear programming for optimal PMU 

placement problem to address the cases of redundancy, 

complete and partial observability and pre-existing 

conventional measurements considering zero injection buses 
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is developed in [7]. A joint placement of PMUs and 

conventional flow measurements model for full 

observability of power systems is developed in [8].  

Reference [9] show that the PMU placement is Non-

deterministic Polynomial time hard (NP complete) problem. 

They present a new simpler definition of graph observability. 

Several heuristics are developed for optimal placement of 

PMUs to ensure observability for solving large scale 

problems. Reference [10] proposed a non-dominated sorting 

genetic algorithm for the PMU placement problem. To 

reduce the initial number of PMU’s candidate locations, 

they considered the conflicting objectives of minimization 

the number of PMUs and maximization of the measurement 

redundancy by estimating the individual optimal solution for 

these conflicting objectives using the graph theoretical 

procedure and a simple genetic algorithm. Then using the 

non-dominated genetic algorithm they searched for the best 

tradeoff. Reference [11] investigated the application of 

immunity genetic algorithm for the optimal PMU placement 

problem.  

Reference [12],  formulated the optimal PMU placement 

problem as a quadratic minimization problem with 

continuous decision variables subject to nonlinear 

observability constraints. Reference [13], proposed an 

analytic technique for optimal PMU placement problem  

considering both long-term economic aspects and existing 

technical issues. An information-theoretic approach for 

PMU placement problem presented in [14]. They proposed 

mutual information criterion between the PMU 

measurements and the power system states to be able to 

facilitate robust PMU placement by explicitly modeling 

probabilistic PMU outages. Reference [15], developed a 

systematic approach to minimize the required number of 

PMUs while guarantying robustness of the least absolute 

value state estimation. 

System reliability is the probability that a system will 

perform its intended function for a given period of time 

under pre specified operating conditions [16]. For a system 

to perform its intended functions, it is important that all 

components and sub-systems are highly reliable and able to 

perform specified functions within the given requirements. 

The reliability of data transmission in power systems highly 

depends on the reliability of PMUs covering each bus since 

PMUs are key component of WAMS. Therefore it is crucial 

to compute and consider the reliability of the arrangement, 

given a placement that is optimal with respect to cost.  

The timely detection of the possibility of blackouts is 

crucial to allow effective control and protection of the 

power system. It is intuitively clear that protecting against 

loss of observability under failures (such as transmission 

line faults, bus faults, outages, or metering failures) requires 

a level of redundancy with additional PMUs. Nowadays 

with the extensive use and installment of PMUs in power 

systems, costs for both PMU and installments are decreasing. 

The need for secure and robust WAMS and decreasing 

overall PMU placement costs will allow considering 

placement of the redundant number of PMUs with the goal 

of reaching a specific reliability of observability. Reference 

[16] developed a two- stage optimization model for the 

optimal PMU placement problem from a reliability 

standpoint, where redundancy levels for all buses in the 

system are assumed to be identical. Such an optimization 

task involves two conflicting objectives, cost minimization 

and reliability maximization.  

However, the assumption of identical redundancy levels 

(i.e., bus reliabilities (r)) at all buses in the system makes the 

solution space smaller thus resulting in infeasible solutions 

in many cases. A nonlinear multi objective optimization 

approach has been used in [17] to improve the feasibility of 

the solution. However, the addition of the reliability 

maximization to the objective function makes the NP-

complete optimal PMU problem even more complex and 

renders it unsolvable for large scale problems by exact 

solution approaches.   

In practice the resources could be limited because of the 

high price of purchasing and installing the PMUs. In this 

case, the decision maker will decide to allocate the limited 

recourses either to the strategic locations or to cover the 

maximum possible buses. Therefore the PMU placement 

problem from a maximum covering standpoint was 

considered in [18]. In the proposed model, the number of 

existing PMUs is factored as inputs into the model. The 

maximum coverage thus dictated by this input is subject to 

the system topology. 

In [19], we present a preliminary conference version of 

the application of the genetic algorithm on IEEE 14 and 30 

bus systems to test the efficiency of the approach on the 

reliability based PMU placement.  In this paper, we increase 

the scope, by developing a revised genetic algorithm, and 

test the approach on large problem instances, namely IEEE 

57, 118, and 2383 test systems. The model not only enables 

solution of the large scale 2383 bus system but also finds 

better tradeoffs compared to the previous approaches 

developed in the literature. The main goals are ensuring full 

system observability while aiming for a pre-specified level 

of reliability of observability and minimizing the cost of 

placing PMUs. The weights associated to the goals derived 

both from the relative importance given to the goals and 

based on simulation results. The need to reach pre specified 

overall system reliability of observability dictates the 

placement of additional PMUs as compared to traditional 

PMU placement problems and eventually results in more 

expensive solution. This extra cost is the cost of achieving a 

higher reliability level.  

The paper is organized as follows. Section II describes 

the Multi-objective problem formulation and section III 

introduces the genetic algorithm approach. In section IV, we 

discuss the implementation of genetic algorithm on the 

multi-objective PMU placement problem and discuss the 
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results on the IEEE test cases.  Section V concludes the 

paper.   

II. MULTI-OBJECTIVE FORMULATION 

The improved reliability based PMU placement briefly 

will be presented in this section. Detailed explanations on 

basic reliability based PMU placement can be found in [16]. 

The assumption of identical redundancy levels (i.e., bus 

reliabilities (r)) at all buses in the system presented in [16] 

makes the solution space smaller resulting in infeasible 

solutions for many cases. The improved reliability model 

compatible with Multi-objective optimization which relaxes 

the assumption of identical redundancy levels (bus 

reliabilities (r)) at all buses in the system will be described.  

PMU placed at a given bus measures both the voltage 

Phasor of that bus and the current phasors of adjacent lines. 

Then providing the availability of accurate branch models 

and by using the Ohm’s law the voltage phasors of adjacent 

buses can be obtained. Therefore placement of a PMU at a 

given bus allows direct measurement of voltage Phasor at 

that bus and computation of the voltage phasors at 

immediate neighboring buses. Thus, the entire system will 

be observable if all buses are covered with one or more 

PMUs. Therefore, buses are connected in series from a 

reliability point of view. In case none of the PMUs are 

redundant, the failure of any PMU would result in the 

system failure. Thus observability of the entire system is 

given as: 

                               
n

i

iAA

1

            (1) 

where A represents the observability of the entire system, Ai 

represents the observability of the ith bus and n is the 

number of the buses in the system. Using the concept of 

union and intersection from set theory yields: 

                  




n

i

i

n

i

i rAPAPROB

11

)()(        (2) 

where ri represents the reliability of observability level for 

ith bus and ROB is the overall system reliability of 

observability. It should be considered that if bus i is covered 

by more than one PMU, the redundant PMUs will be 

connected in parallel from the reliability standpoint. 

Therefore, if all PMUs covering ith bus fail simultaneously, 

observability of ith bus will fail.  Assuming identical 

reliability for PMUs, we can define reliability of 

observability of bus i (ri) as: 

i
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where qj represents the probability of failure of jth PMU and 

fi is the total number of PMUs covering ith bus.  

Hence 


if

j

jq

1

denotes probability of failure of all PMUs 

observing ith bus. Substituting (3) into (2) 
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This reliability index is included into placement 

constraints as follows. Defining X as a binary decision 

variable vector defined by: 






otherwise0

busatpresentisPMUaif1 i
xi   (5) 

the binary connection matrix A of the system can be directly 

obtained by transforming the bus admittance matrix’s 

entries into binary form defined by: 
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By definitions of xj and Ai,j, the total number of PMUs 

covering ith bus(fi ) can be developed mathematically: 






n

j

jjii xAf

1

,          (7) 

Fi’s for the IEEE 14 standard bus system in Fig.1are as 

follows: 

 5211 xxxf 
 

543212 xxxxxf 
 

4323 xxxf 
 

9754324 xxxxxxf 
 

54215 xxxxf 
 

13121166 xxxxf 
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98747 xxxxf 
 

878 xxf 
 

14109749 xxxxxf 
 

1110910 xxxf 
 

1110611 xxxf 
 

1312612 xxxf 
 

141312613 xxxxf 
 

1413914 xxxf 
 

Hence the Multi-objective PMU placement model has 

been formulated with two main objectives. The first main 

objective is the maximization of the reliability of 

observability of the system with the minimum 

desired/predefined reliability of observability of Rmin. The 

second main objective is the minimization of the number of 

PMUs. The PMUs assumed to be identical; therefore 

minimizing the number of PMUs will result in cost 

minimization. The developed genetic algorithm model will 

also maintain the full system observability, since based on 

the reliability of observability definition; reliability of 

observability of the partial observable system will be zero. 

Number of PMUs must increase to reach higher 

redundancy in observability. Therefore, the objectives of 

PMU minimization and reliability of observability 

maximization are in conflict. To resolve the conflict, 

relative weights should be assigned to each objective to 

combine two conflicting objective functions into a single 

objective function .The Multi-objective programming model  

is as follows: 

      
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where if is given in (7), Rmin is the desired system wide 

reliability level, 


n

i

ix

1

 is the total  number of buses to be 

placed in the system and wi defines the weight associated to 
each objective and sum of wi is equal to one . w defines the 
weight associated with the objectives and is a decision tool 
for the problem solver. If reliability maximization is more 
important, then w1 should be increased. However if cost is 
more important than reliability, then smaller value of w2 
should be used. Therefore since the objective in this paper is 
to reach the predefined system reliability of observability 

with minimum cost and highest possible system reliability of 
observability; The weights in (8) derived both from the 
relative importance given to the objectives and based on 
simulation results. Since the scales are different for R and x, 
the model in (8) needs to be normalized. 

III. GENETIC ALGORITHM FORMULATION 

In the Multi-objective PMU placement problem, a genetic 

algorithm based approach is utilized. Genetic algorithm is 

the search heuristic that mimics the process of a natural 

evolution in which the technique such as the inheritance, 

mutation, selection, and the crossover operators are being 

used.  

In the solution approach, we have implemented a genetic 

algorithm based on binary encoding. If the PMU is placed 

on that particular bus, then the representative value at that 

particular bus takes the value of 1, and it takes the value of 0 

if otherwise. The scheme can be represented by the 

following operation in a 10-node system 

1 0 1 0 1 0 0 0 1 0  

Based on this particular representation, the PMUs are 

placed on the nodes 1, 3, 5, and 9.  

For each population, initial population is generated by 

creating a random number that is uniformly distributed 

between 0 and bus size. A corresponding threshold value is 

calculated by dividing that number to the total number of 

bus size. If the generated random number is smaller than the 

corresponding threshold value, then in the corresponding 

bus, PMU is placed; otherwise no PMU is replaced on the 

position. After the initial population generation, a 

 
Fig. 1.  IEEE 14 Bus system. 
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corresponding fitness function is calculated. The fitness 

function is calculated based on  

 

 Number of covered buses divided by total number 

of buses (i.e., 1 ) 

 

 Number of buses that no PMU is placed divided by 

total number of buses (i.e., 2 ) 

 

 

 Whether the system threshold reliability level is 

exceeded or not (i.e., 3 -a binary measure) 

 

 Overall system reliability level ( 4 ) 

 

 

The fitness function then can be calculated as  

 

i

i

i 




1

          (9) 

 

Where    is the corresponding fitness function value of 

the chromosome and i is the corresponding weights 

associated with the criteria that are listed above.   

After the corresponding solutions are ranked according to 

the descending order of fitness function, based on the 

roulette wheel selection scheme, the chromosomes that will 

undergo crossover to produce offsprings are selected. Based 

on this scheme, the solution which has a higher fitness 

solution is likely to be selected for producing offsprings for 

undergoing crossover operator. The roulette-wheel selection 

is based on the idea that better solutions when go under 

cross-over operator provide better offsprings. For producing 

offspring, two different approaches are followed depending 

on the length of the chromosome (i.e., number of buses). 

For 14, 30, and 57-bus systems, a traditional two point 

crossover operator is applied. For the 118 and 2383 bus 

systems, four point traditional crossover operator is utilized.    

 

In a two-point traditional crossover operator, two 

crossover sites are randomly selected and the part of the 

chromosome between those sites is exchanged among 

theparents. An example of the traditional two-point 

crossover can be provided as follows:  

 

Parent 1: 1  0  0  0 | 1  0  0 | 0  0  0  1  0  0  0   

 

Parent 2: 0  0  1  1 | 0  1  0 | 1  0  1  0  1  0  1   

 

 

Offspring 1:  1  0  0  0  | 0  1  0 | 0  0  0  1  0  0  0   

 

Offspring 2:  0  0  1  1  | 1  0  0 | 1  0  1  0  1  0  1   

 

For 118 and 2383 bus systems, four point crossover-

operator is applied. In the four point cross-over operator, 

four crossover sites are randomly selected. In that scheme, 

the bits between the first and the second, and the third and 

fourth sites are exchanged among the parents to produce 

offsprings. In addition to two point crossover-operator [20], 

the efficiency of multi-point crossover operator especially 

for the chromosome representations involving long strings 

has been analyzed in the literature as well [21]. An example 

of the four-point crossover is presented as follows: 

 

Parent 1: 1  0  0 | 0  1  0  0 | 0  0  0 | 1  0  0  0   

 

Parent 2: 0  0  1 | 1  0  1  0 | 1  0  1 | 0  1  0  1   

 

 

Offspring 1: 1  0  0 | 1  0  1  0 | 0  0  0 | 0  1  0  1   

 

Offspring 2: 0  0  1 | 0  1  0  0 | 1  0  1 | 1  0  0  0   

 

After offsprings are created, the mutation operator is 

performed on a bit by bit basis. A random number uniformly 

distributed between 0 and 1 is generated for each bus in the 

chromosome representation. If the generated number is 

smaller than the mutation probability, then the 

corresponding bit is changed from 0 to 1 or 1 to 0, thus 

placing or removing the PMU on the corresponding bus.  

After all the offpsprings are created, the existing 

population and created offsprings are ranked based on the 

descending order of the fitness function which is presented 

in (9), and a combination of the elitist selection  and roulette 

wheel selection is performed to select the new generation. 

Again a distinction is made based on the problem size. For 

14, 30, 57, and 118 bus systems, top10 chromosomes are 

selected and included directly in the new generation using 

the elitist generation scheme. For the 2383 bus system, this 

number is set to be 50. The remaining chromosomes are 

selected based on the roulette wheel selection rule. After 

forming the new generation, the same sequence of 

procedures are applied (i.e., selection for producing 

offsprings, crossover, mutation, and the selection for the 

new generation) on the new generation, and this is repeated 

until generation limit is reached (i.e., 15,000 for 2383 bus 

systems, 5000 for the rest).  

The genetic algorithm stops after a predefined limit on the 

generation number is reached. Table I provides the 

parameters associated with the genetic algorithm. The 

suggested evolutionary approach based on genetic algorithm 

is coded in Mathworks Matlab platform without using 

Genetic Algorithm toolbox. Creating the code helps us tailor 
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and fine-tune genetic algorithm according to the nature of 

the problem. 

IV. RESULTS  AND DISCUSSIONS  

The proposed genetic algorithm Multi-objective PMU 

placement model is implemented for the IEEE 14, 30, 57, 

118 and 2383 bus standard test systems. The computations 

were performed with Matlab2010a. on a 2.66 GHz Intel(R) 

Core™ 2 Quad CPU with system memory of 2.96 GB. 

Results are reported with Rmin = 0.90 for all system types. 

 

A summary of results for the all standard IEEE types are 

presented in Tables II, III and IV for PMU reliability of 0.95, 

0.99, and 0.99833  respectively. The IEEE 2383 test system 

is missing in Table II since the test system is not able to 

reach the desired reliability of observability of 0.90 with the 

PMU reliability of 0.95. In these tables, the required number 

of PMUs and achieved actual overall system reliability are 

calculated for PMU reliabilities of 95%, 99% and 99.833% 

since in reality PMU reliabilities are near 99%. 

The PMU locations for the standard IEEE test systems 

for PMU reliability of 0.95, 0.99 and 0.99833 are shown in 

Tables V, VI and VII respectively. It should be noted that 

for the IEEE 2383 test system, non-PMU buses rather than 

PMU-buses are presented for the purpose of brevity. 

 

Based on the results shown in Table III and IV, it is clear 

that with the increase in the system size, higher redundancy 

level in terms of the number of PMUs is required to 

maintain the desired reliability levels. 

The usefulness of the genetic algorithm approach further 

investigated, by comparing the results to the reliability 

based placement (RBP) results in [16], goal programming 

based (GPB) approach in [22] and optimal PMU placement 

(OPP) results in [8]. Results for the case of p=0.99 with 

minimum desired system wide reliability of observability 

level of Rmin=0.90 are shown in Table VIII for IEEE 14, 30, 

57, 118 and 2383 standard bus systems. The genetic 

algorithm approach is shown to be efficient as compared to 

other approaches presented in [8, 16 and 22]. 

In literature, the approaches presented in the previous 

paragraph fail to solve IEEE 2383 bus system with 

reliability considerations [8, 16, and 22]. Not only the 

genetic algorithm approach is able to solve the 2383 bus-

system problems but also performs better in terms of 

solution quality as compared to other approaches for solving 

large scale systems.  

 

 

TABLE I 
GENETIC ALGORITHM PARAMETERS 

Parameter Value 

 

Population Size 

 

60|500 

Number  of offsprings created in each generation 30|74 

Number of population members selected by the  elitist 

selection rule 

10|50 

Number of population members selected by the  

roulette wheel selection 

50|450 

Mutation probability 0.01 

Generation Limit 5000|15000 

ω1 4/9 

ω2 1/10 

ω3 2/5 

ω4 1/18 

  

 

TABLE II 

PLACEMENT RESULTS FOR PMU RELIABILITY OF 0.95 

 
IEEE 

System 

 

#PMU Reliability Achieved 

14 8 0.9329 

30 20 0.9142 

57 35 0.901 

118 82 0.9009 

 

 

TABLE III 
PLACEMENT RESULTS FOR PMU RELIABILITY OF 0.99 

 

IEEE 
System 

 

#PMU Reliability Achieved 

14 5 0.9315 

30 13 0.9123 

57 27 0.9004 

118 59 0.907 

2383 2250 0.9003 

 

 TABLE IV 

PLACEMENT RESULTS FOR PMU RELIABILITY OF 0.99883 

 
IEEE 

System 

 

#PMU Reliability Achieved 

14 4 0.9818 

30 10 0.9736 

57 17 0.9244 

118 35 0.9045 

2383 1993 0.9004 
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By comparing the genetic algorithm (GA) and optimal 

PMU placement (OPP) results from Table VIII it is clear 

that although the proposed model requires more PMUs 

compared to OPP, it achieves a higher system reliability 

level. Only for the case of IEEE 14 bus system, the OPP 

performs slightly worse than the GA based solution by 

placing 4 PMUs and almost reaching minimum required 

reliability of 0.9 (89.59) as compared to GA based solution.  

However, in the case of IEEE 118 bus system, system 

requires 27 additional PMUs to increase the reliability of 

TABLE V 
PLACEMENT LOCATIONS FOR PMU RELIABILITY OF 0.95 

 

IEEE 
System 

 

PMU Locations 

14 2,4,5,6,7,9,11,13 

30 
1, 2, 3, 5, 6, 9, 10, 11, 12, 13, 15, 

16, 18, 19, 22, 24, 25, 27, 28 

57 

1, 2, 4, 6, 9, 10, 11, 12, 15, 18, 19, 

21, 22, 24, 25, 27, 28, 29, 30, 32, 
33, 34, 36, 37, 39, 41, 44, 45, 46, 

47, 49, 50, 53, 54, 56 

118 

1, 2, 5, 6, 7, 9, 10, 11, 12, 15, 17, 
19, 20, 21, 22, 23, 24, 26, 27, 28, 

29, 30, 32, 34, 35, 36, 37, 40, 42, 

43, 44, 45, 46, 47, 49, 51, 52, 53, 

54, 56, 57, 59, 61, 62, 64, 65, 66, 

68, 70, 71, 73, 75, 76, 77, 78, 79, 

80, 83, 84, 85, 86, 87, 89, 90, 91, 
92, 94, 96, 100, 101, 105, 106, 108, 

109, 110, 111, 112, 114, 115, 116, 

117, 118 

 

 TABLE VI 

PLACEMENT LOCATIONS FOR PMU RELIABILITY OF 0.99 

 
IEEE 

System 

 

PMU Locations 

14 2,6,7,9,13 

30 1, 2, 6, 9, 10, 12, 15, 16, 19, 24, 25, 27, 30 

57 

1, 4, 6, 9, 12, 15, 19, 21, 22, 24, 26, 27, 

29, 30, 32, 34, 36, 37, 41, 45, 46, 47, 49, 

50, 52, 54, 56 

118 

1, 5, 7, 9, 10, 11, 12, 15, 17, 19, 21, 22, 
24, 26, 27, 28, 30, 32, 34, 36, 37, 40, 44, 

45, 46, 49, 51, 52, 54, 56, 57, 59, 62, 64, 

65, 66, 68, 70, 71, 75, 77, 78, 80, 83, 85, 
86, 89, 90, 92, 94, 96, 100, 101, 105, 106, 

109, 110, 114, 118 

2383 

All buses except {17, 25, 26, 27, 31, 36, 

52, 54, 59, 69, 79, 95, 98, 115, 120, 129, 

160, 165, 166, 199, 203, 208, 221, 234, 
283, 286, 318, 323, 347, 349, 376, 378, 

413, 417, 431, 439, 443, 465, 497, 503, 

549, 561, 565, 570, 590, 596, 598, 604, 
610, 618, 621, 643, 653, 702, 725, 770, 

771, 772, 775, 785, 804, 808, 838, 890, 

893, 918, 921, 926, 947, 1055, 1058, 
1066, 1088, 1089, 1130, 1143, 1169, 

1193, 1196, 1215, 1220, 1223, 1266, 

1344, 1372, 1380, 1398, 1411, 1445, 
1479, 1500, 1501, 1527, 1536, 1552, 

1566, 1579, 1582, 1638, 1658, 1663, 

1674, 1702, 1704, 1724, 1742, 1752, 
1826, 1833, 1838, 1863, 1881, 1902, 

1950, 1960, 1962, 1965, 1971, 2014, 

2020, 2037, 2038, 2097, 2138, 2155, 
2156, 2194, 2249, 2321, 2344, 2352, 

2357, 2380} 

 

TABLE VII 

PLACEMENT LOCATIONS FOR PMU RELIABILITY OF 0.99833 

 
IEEE 

System 

 

PMU Locations 

14 2,6,7,9 

30 1, 2, 6, 9, 10, 12, 15, 19, 25, 27 

57 
1, 4,  9, 10, 20, 22, 25, 27, 29, 32, 36, 39, 41, 45, 46, 

49, 54 

118 

3, 5, 9, 12, 15, 17, 21, 23, 27, 29, 30, 32, 34, 37, 40, 

45, 49, 51, 54, 56, 62, 64, 68, 71, 75, 77, 80, 85, 86, 
89, 92, 96, 100. 105, 110 

2383 

All buses except {5, 10, 11, 14, 15, 20, 21, 24, 26, 

27, 29, 35, 36, 41, 44, 46, 47, 59, 60, 66, 70, 75, 76, 
80, 83, 87, 88, 91, 98, 101, 110, 115, 117, 123, 126, 

131, 143, 144, 150, 154, 159, 162, 163, 166, 167, 
169, 170, 172, 182, 187, 194, 195, 210, 211, 212, 

220, 222, 226, 234, 237, 238, 244, 253, 254, 256, 

269, 270, 272, 281, 282, 283, 290, 294, 296, 298, 
303, 304, 307, 308, 317, 324, 333, 340, 342, 349, 

363, 370, 372, 381, 389, 400, 410, 412, 417, 420, 

426, 427, 430, 431, 432, 439, 449, 451, 452, 457, 
478, 484, 487, 489, 491, 506, 523, 532, 534, 536, 

537, 544, 547, 553, 559, 564, 567, 570, 572, 575, 

579, 581, 584, 595, 596, 603, 605, 607, 609, 616, 
617, 627, 634, 636, 637, 640, 641, 651, 655, 665, 

668, 670, 684, 687, 704, 705, 709, 714, 729, 731, 

732, 735, 739, 746, 748, 749, 757, 773, 779, 782, 
789, 793, 794, 813, 823, 830, 834, 840, 842, 865, 

866, 888, 890, 899, 900, 917, 924, 932, 960, 963, 

964, 975, 982, 994, 1000, 1001, 1003, 1016, 1021, 
1042, 1045, 1062, 1074, 1077, 1079, 1098, 1105, 

1117, 1134, 1142, 1144, 1155, 1164, 1169, 1173, 

1189, 1194, 1195, 1204, 1207, 1210, 1223, 1227, 
1235, 1236, 1252, 1262, 1264, 1276, 1291, 1292, 

1312, 1320, 1326, 1328, 1329, 1339, 1342, 1343, 

1344, 1363, 1372, 1373, 1374, 1375, 1377, 1390, 
1394, 1395, 1401, 1403, 1411, 1417, 1420, 1421, 

1427, 1444, 1450, 1459, 1466, 1471, 1478, 1491, 

1492, 1495, 1501, 1515, 1517, 1526, 1549, 1553, 
1557, 1560, 1563, 1565, 1566, 1567, 1577, 1583, 

1586, 1591, 1598, 1606, 1612, 1613, 1634, 1644, 

1646, 1650, 1659, 1670, 1683, 1700, 1702, 1705, 
1709, 1715, 1718, 1720, 1737, 1743, 1744, 1745, 

1752, 1759, 1762, 1775, 1777, 1778, 1788, 1791, 

1795, 1801, 1815, 1819, 1831, 1838, 1847, 1848, 
1853, 1869, 1891, 1897, 1911, 1916, 1924, 1932, 

1935, 1942, 1945, 1947, 1956, 1959, 1960, 1965, 

1966, 1967, 1983, 1988, 1989, 1990, 1992, 1995, 
2000, 2014, 2039, 2073, 2087, 2088, 2090, 2093, 

2097, 2107, 2123, 2126, 2127, 2128, 2136, 2147, 

2165, 2171, 2180, 2188, 2193, 2198, 2220, 2227, 
2229, 2238, 2242, 2250, 2254, 2264, 2265, 2267, 

2285, 2292, 2304, 2309, 2316, 2319, 2322, 2326, 

2328, 2331, 2335, 2336, 2341, 2344, 2353, 2359, 
2362, 2368, 2375, 2376} 
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observability from 44% to desired target value of 90%. It 

should be noted that in the conventional PMU placement 

problems, loss of a PMU, would result in loss of the 

observability of the majority of the neighboring buses. 

Therefore, loss of a single PMU will result in loss of 

observability of the system. Hence, such placements are not 

fault tolerant. Also comparing the GA approach to reliability 

based placement RBP and GPB, it is clear that the former 

outperforms the latter. Since the proposed GA model 

reaches the desired reliability level of 90% approximately 

50% lesser number of PMUs that would be required for the 

RBP based solution, using the GA based approach might 

lead to significant cost savings. The RBP reaches higher 

level of reliability of observability, but it might not be 

required if the target level of reliability is set as 90%. 

Hence, the proposed GA model not only is able to solve 

the large scale problems but also gives a better solution for 

the majority of the problems as compared to other two 

approaches by using least number of PMUs given the 

desired level of reliability. The GA based approach provides 

the solution with a closer value of system reliability to the 

target level as compared to other approaches. 

In genetic algorithm implementation, the key issues are  

the representation of the solution as an artificial 

chromosome and the application of crossover operator. 

Those choices should be made in accordance with the 

structure of the problem and solution methodology. 

Moreover, these two issues have an effect on the scalability 

of the problem.  

The comparison of the effect of PMU reliability on the 

multi-objective placement has been shown on Fig.2.  

 

 

 

 

 

 

 

 
             Fig. 2.  Effect of PMU reliability on the different IEEE standard test systems. 

 

TABLE VIII 
COMPARISON RESULTS FOR PMU RELIABILITY OF 0.99 

  
 

#PMU    
 

R  

 

IEEE 

System 

GA GPB OPP RBP GA GPB OPP RBP 

14 5 5 4 9 0.93 0.93 0.89 0.98 

30 13 14 10 21 0.91 0.93 0.84 0.95 

57 27 29 17 57 0.90 0.92 0.62 0.99 

118 59 71 32 115 0.90 0.91 0.44 0.99 

2383 2250 N/A N/A N/A 0.90 N/A N/A N/A 
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From the figure, as expected, it can be seen that higher 

level of individual PMU reliability results in lesser number 

of PMUs required reaching the desired overall system 

reliability of observability and the effect increases as the size 

of the system grows. The secondary y axis indicates the 

IEEE 2383 bus system values only.  

Fig. 3 provides the evolution of the quality of the best 

solution found during the computation with respect to 

generations based on individual PMU reliability of 95% for 

GA. The left y axis indicates number of PMUs, whereas the 

right y axis indicates the overall score and the total system 

reliability. The x axis indicates the generation number. Note 

that throughout the generations, the number of PMUs is 

decreasing, whereas the overall score that is provided in (4) 

is increasing. In terms of the total system reliability, there is 

a fluctuation. Initially, the system reliability at some 

generations exceeds the level of 0.96, but throughout the 

generations, it converges to the target level of 0.9, whereas 

the number of PMU is decreasing initially from the 114 to 82. 

Throughout better PMU placement, relatively same level of 

reliability of observability can be retained with less number 

of PMUs which leads to less costly PMU placement 

strategies. Another interesting point to note that after 

approximately generation number of 2750, the population 

converges and no changes are observed afterwards. 

 There are other available heuristic procedures, 

evolutionary procedures that explicitly deal with multiple 

objectives that could be implemented for this problem. They 

may be used for benchmark purposes where heuristic 

approaches including genetic algorithm may be compared 

based on the quality of the solution and computation time. 

The required input might be adopted in the form that might 

be used by the routines in the library. 

 

 

 
 

 
                 Fig. 3.Evolution of the quality of the incumbent solution provided by the GA for individual PMU reliability of 95% for IEEE 118 bus system. 
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V. CONCLUSION 

In this paper we presented a genetic algorithm based 
solution methodology to tackle reliability based PMU 
placement model with two conflicting objective of 
maximization of the overall system reliability of 
observability and minimization of the number of PMUs for 
complete observability of the power network. The proposed 
genetic algorithm approach is implemented for IEEE 14, 30, 
57, 118, and 2383 bus power systems with PMU reliabilities 
and desired system reliability as inputs.  

Comparing to the traditional optimal PMU placement 

methods, the proposed approach is superior in terms of 

reliability of system observability. As compared to OPP 

based approach, where the system reliability of 

observability is significantly improved from  ~45% to more 

than ~90% for IEEE 118 bus system. However, although the 

results based on the proposed method require installation of 

more PMUs, it significantly increases the reliability of 

observability which is justified based on reliability 

considerations.  

On the other hand, the proposed approach is better as 

compared to existing reliability based placement approaches. 

A significant reduction for the number of PMUs installed is 

achieved under genetic algorithm based approach to reach 

the minimum desired system reliability of observability of 

90% as compared to other approaches (i.e., somewhere 

between approximately 17-50% for the IEEE 118-bus 

system). 

Moreover, other reliability based approaches fail to 

provide a solution for IEEE-2383 bus systems, whereas the 

proposed genetic algorithm provides a solution for this 

instance at the expense of computation time.   

In short, the proposed GA based solution methodology 

provides a balanced approach for providing the desired level 

of system reliability of observability with the optimal or 

near-optimal number of PMUs as compared to other 

approaches.   In a sense, the proposed approach seems to be 

the most balanced approach where two targets (exceeding 

the level of the desired reliability of system observability 

and minimizing the total number of PMUs placed) as 

compared to reliability based approaches. At the same time, 

it also considers the reliability perspective of the system that 

is missed by traditional PMU placement approaches by 

placing minimum additional number of PMUs at the 

expense of reduced reliability where the failure of one PMU 

might result in the total loss of system observability.  
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