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Abstract: This paper extends the existing results on joint in-
put and state estimation to systems with arbitrary fault and un-
known inputs. The objective is to derive an optimal filter in the
general case where not only fault affect both the systems state
and the output, but also the direct feedthrough matrix has ar-
bitrary rank. The paper extends both the results of Bessaoudi
and Ben Hmida (2013). [State and fault estimation of linear dis-
crete time systems, (HIS 2013)]. The method is based on the
assumption that no prior knowledge about the dynamical evo-
lution of the fault and the disturbance is available. As the fault
affects both the state and the output, but the disturbance affects
only the state systems. The relationship between the proposed
filter and the existing literature results is also addressed. Final-
ly, two numerical examples are given in order to illustrate the
proposed method, in particular to solve the estimation of the si-
multaneous actuator and sensor fault problem and to make a
comparison with the existing literature results.
Keywords: Kalman filtering, Recursive state estimation , fault es-
timation, minimum-variance estimation.

I. Introduction

In the past few years, the problem of filtering in the pres-
ence of unknown inputs has attracted big attention, due to
its applications in environment. The unknown input filter-
ing problem has been treated in the literature by differen-
t approaches. The first approach assumes that the model
for dynamical evolution of the unknown inputs is available.
When the properties of the unknown input are known, the
augmented state Kalman filter (ASKF) is a solution. To
reduce computation costs of the ASKF, Friedland [1] pro-
posed the two stage Kalman filter where the estimation of
the state and unknown input are decoupled. The second ap-
proach treats the case when we not have a prior knowledge
about the dynamical evolution for unknown input. Kitanidis
[2] was the first to solve the problem using the linear unbi-
ased minimum-variance. An extend Kitanidis filter using a
paramaterizing technique to obtain an optimal filter (OEF)
have been proposed by Darouach et al [3]. Hseih [4] has
been developed a robust-two stage Kalman filter (RTSKF)

equivalent to Kitanidis filter. An (OMVF) reported by C.S
Hsieh [5] has been used in order to developed an optimal
minimum variance filter (OMVF) to solve degradation prob-
lems encountered in (OEF). Gillijns and De Moor [6] has
treated the problem of estimating the state in the presence
of unknown inputs which affect the systems model. They
have been developed a recursive filter which is optimal in the
sense of minimum-variance. This filter has been extended by
the same authors for joint input and state estimation to lin-
ear discrete-time systems with direct feedthrough where the
state and the unknown input estimation are interconnected.
This filter is called recursive three step filter (RTSF) [7] and
is limited to direct feedthrough matrix with full rank. Cheng
et al, [8] proposed a recursive optimal filter with global op-
timality in the sense of unbiased minimum-variance. This
filter is limited to estimate the state. The case of an arbitrary
rank has been proposed by Hsieh in [9] the designed optimal
filter Known as ERTSF (Extend RTSF). Recently, another
technique using a least square method have been proposed
by Bessaoudi et al, [10] to estimate the state and unknown
input. The Fault Detection and Isolation (FDI) problem for
linear systems with unknown disturbances is generally stud-
ied, see e.g. Nikoukhah [11], Keller [12], Chen and Patton
[13, 14], Ben Hmida et al, [15]. According to [11], a robust
fault detection and isolation in continuous-time is developed
using the error innovation technique to generate an unbiased
white residual signals. The fault is diagnosed by a statistical
testing. A new method is developed in order to detect and
isolate multiple faults appearing simultaneousely or sequen-
tially in linear time-invariant stochastic discrete-time systems
with unknown inputs [12]. Their methods consist of generat-
ing directional residuals using an isolation filter. In [13] the
optimal filtering and robust fault diagnosis problem has been
studied for stochastic systems with unknown disturbances.
The output estimation error with disturbance decoupling is
used as a residual signal. After that, a statistical testing pro-
cedure is applied to examine the residual and to diagnose
faults. Netherless, the simultaneous actuator and sensor fault
and state problem is not treated in [13, 14]. Recently, [16]
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present a new optimal recursive filter for state and fault es-
timation of linear stochastic systems with unknown distur-
bances. This method is based on the assumption that no pri-
or knowledge about the dynamical evolution of the unknown
disturbances is available. The filter has two advantages: it
considers an arbitrary direct feedthrough matrix of the fault
and it permits a multiple faults estimations. Ben Hmida et al
[18] present a (OThSKF), this filter is obtained after decou-
pling the covariance matrices of the augmented state Kalman
filter using a three-stage U-V transformation. A new robust
filter based on recursive least square estimation for linear s-
tochastic systems with unknown disturbances are proposed
in [10], the novel elements of this algorithm are an easily
simple implementable, square root method is used to solve
the numerical problems affecting the unknown input filter al-
gorithm and related information filter and smoothing algo-
rithms. The main objective of this paper is to develop a new
filter that can solve the problem of simultaneously estimating
the state and the fault in the presence of the unknown input.
The remainder of this paper is organized as follows. Section
2 states the problem of interest and some preliminary. In Sec-
tion 3, the design of filter is developed. Finally, an illustrative
example of the proposed approach techniques is presented.

II. Problem and Preliminaries

A. Problem formulation

The problem consists of designing a filter that gives a robust
state and fault estimation for linear time-varying stochastic
systems in the presence of unknown inputs. We consider that
the linear stochastic time-varying discrete stochastic systems
with unknown disturbances and additive faults are described
by the following form:

xk+1 = Akxk +Bkuk + F x
k fk +Gkdk + wk (1)

yk = Ckxk +Dkuk + F y
k fk + vk (2)

where xk ∈ ℜn is the state vector, yk ∈ ℜm is the obser-
vation vector, uk ∈ ℜr is the known input vector, fk ∈ ℜp

is the additive fault vector and dk ∈ ℜq is the unknown
disturbances vector. The matrices Ak, Bk, Ck, Dk F x

k ,
Gk and F y

k are known and have appropriate dimensions.
fk presents the vector of an additive fault that can be
occur in the systems. dk the unknown input vector, can be
present an unknown perturbation : for example a parametric
uncertainty.
The following assumptions are necessary for the develop-
ment of the filter.
Assumptions:

1. The noises wk and vk are zero-mean white noise
sequence with the following covariances :

ε
[
wkw

T
l

]
= Qkδkl and ε

[
vkv

T
l

]
= Rkδkl.

where T denotes transpose and δkl denotes the Kro-
necker delta function.

2. The process noise wk and the measurement noise vk
are uncorrelated.

ε
[
wkv

T
l

]
= ε

[
vkw

T
l

]
= 0

3. The initial state is a Gaussian random variable and is
uncorrelated with the white noise processes wk and vk :
ε (x0) = x̂0 and P x

0 = ε
(
(x0 − x̂0) (x0 − x̂0)

T
)

where E [.] denotes the expectation operator.

4. Conditions on matrices ranks:
0 < rank (F y

k ) ≤ p and rank [CkGk−1] =
rank [Gk−1] = q

5. The pair (Ck, Ak) is observable.

The objective of this paper is extend the results of [17] in or-
der to derive a new recursive optimal filter structure to obtain
a better fault and state estimation when 0 < rank (F y

k ) ≤ p
in spite of the presence of the unknown disturbance dk.

B. Preliminary material

We first carry out a transformation of the system to decou-
ple the output equation into two components, one with a full
rank direct feedthrough matrix and the other without direct
feedthrough. In this form, the filter can be designed leverag-
ing existing approaches for both cases [7, 8].
Let rk = rank (F y

k ) < p. Then the singular value decompo-
sition of the matrix F y

k is given by:

F y
k =

[
U1,k U2,k

] [ Σk 0
0 0

] [
V T
1,k

V T
2,k

]
(3)

where we have Σk ∈ ℜrk×rk , U1,k ∈ ℜm×rk , U2,k ∈
ℜm×(m−rk), V1,k ∈ ℜp×rk and V2,k ∈ ℜp×(p−rk).[
U1,k U2,k

]
and

[
V1,k V2,k

]
are unitary matrices.

There existe a transformation matrix of the from Tk =[
TT
1,k TT

2,k

]T
such that the systems (1) and (2) written

as [8]:

xk+1 = Akxk +Bkuk + F x
1,kf1,k + F x

2,kf2,k

+Gkdk + wk (4)
z1,k = C1,kxk +D1,kuk +Σkf1,k + v1,k (5)
z2,k = C2,kxk +D2,kuk + v2,k (6)

where

v1,k = T1,kvk

v2,k = T2,kvk

z1,k = T1,kyk ∈ ℜrk

z2,k = T2,kyk ∈ ℜ(m−rk)

F x
1,k = F x

k V1,k

F x
2,k = F x

k V2,k

C1,k = T1,kCk

C2,k = T2,kCk

D1,k = T2,kDk

D2,k = T2,kDk

(7)
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with assumption that:

rank(C2,kF
x
2,k−1) = rank(F x

2,k−1) (8)
rank(C2,kGk−1) = rank(Gk−1) (9)

Since [V1,k V2,k] is a unitary matrix, it follows that the fault
must be reconstructed through its two components f1,k and
f2,k according to:

fk = V1,kf1,k + V2,kf2,k (10)

The transformation matrix Tk is given by:

Tk =

[
Irk −UT

1,kRkU2,k

(
UT
2,kRkU2,k

)−1

0(m−rk)×rk I(m−rk)

]

×
[

UT
1,k

UT
1,k

]
(11)

Cheng et al. [8] define R1,k and R,k as the variance of
v1,k and v2,k, respectively, and R12 (k, i) as their covariance.
Then it follows that:

R1,k = E [v1,kvT1,k]
= UT

1,kRkU1,k − UT
1,kRkU2,k

×
(
UT
2,kRkU2,k

)−1
UT
2,kRkU1,k

R2,k = E [v2,kvT2,k] = UT
2,kRkU2,k

R12(k, k) = E [v1,kvT2,k] = 0

R12(k, i) = E [v1,kvT2,i] = 0 fork ̸= i

Moreover, Cheng et al. [8] show the following relations:

• cov [v1,k, wi] = 0 and cov [v2,k, wi] = 0 for k ̸= i.

• cov [v1,k, x0] = 0 and cov [v2,k, x0] = 0.

Under the system equations (4)-(6), we note that we can es-
timate the second component of the fault not at the step k
but at step k − 1, because f2,k−1 will be estimated from the
state. The proposed state and fault filter has the following
structure:

x̂k/k−1 = Ak−1x̂k−1/k−1 +Bk−1uk−1 +

F x
1,k−1f̂1,k−1, (12)

f̂2,k−1 = Mf2
k

(
z2,k −D2,kuk − C2,kx̂k/k−1

)
(13)

f̂1,k = Mf1
k

(
z1,k −D1,kuk − C1,kx̂

∗
k/k−1

)
(14)

f̂k = V1,kf̂1,k + V2,kf̂2,k−1 (15)

x̂∗
k/k−1 = x̂k/k−1 + F x

2,k−1f̂2,k−1 +

Kx∗
k

(
z2,k − C2,kx̂k/k−1

)
(16)

x̂k/k = x̂∗
k/k−1 +

Kx
k

(
z2,k −D2,kuk − C2,kx̂

∗
k/k−1

)
(17)

where the gain matrices Mf1
k ,Mf2

k , Kx∗
k and Kx

k are deter-
mined to satisfy the following criteria:

- Unbiasedness: the estimator must satisfy

E [f̃k] = E [fk − f̂k] = 0 (18)
E [x̃k/k] = E [xk − x̂k/k] = 0. (19)

- Minimum-variance : the estimator is determined such that:

• The mean square errors E [(f̃k)T f̃k] is minimized under
the constraint (18),

• The trace
{
P x
k/k = E [x̃k/k(x̃k/k)

T ]
}

is minimized un-
der the constraints (18) and (19).

III. Filter design

A. Time update

First, we consider the time update. Let the x̂k−1/k−1 and
f̂k/k denote the optimal unbiased estimates of xk−1 and
fk−1 given measurement up to time k − 1, then the time
update is given by equation (12) and (15).
With x̃k/k = xk− x̂k/k and f̃k/k = fk− f̂k−1. Consequent-
ly, the covariance matrix P̄ x

k/k−1 has the following form:

P̄ x
k/k−1 = ε

[
x̄k/k−1x̄

T
k/k−1

]
=

[
Ak−1 F x

1,k−1

]  P x
k−1/k−1 P xf1

k−1(
P xf1
k−1

)T

P f1
k−1

[
AT

k−1

F xT
1,k

]
+Qk−1

with P x
k/k−1 = ε

[
x̃k/k−1x̃

T
k/k−1

]
, P f1

k/k−1 =

ε
[
f̃1,k/k−1f̃

T
1,k/k−1

]
and P xf1

k−1 = ε
[
x̃k−1/k−1f̃

T
1,k−1

]
.

Expression for this covariance matrices will be derived in
the next sections.

B. Fault estimation

In this section, we consider the estimation of the fault. The
gain matrices Mf1

k and Mf2
k will be determined so that the

filter yields robust estimates of fk and xk in spite of the p-
resence of the unknown disturbances dk. Next, the unbiased
minimum-variance fault and state estimation will be demon-
strated. The errors estimation of f1,k and f2,k−1 are given
by:

f̃1,k = f1,k − f̂1,k

=
(
I −Mf1

k Σk

)
f1,k −Mf1

k ỹ1,k
(20)

f̃2,k−1 = f2,k−1 − f̂2,k−1

=
(
I −Mf2

k C2,kF
x
2,k−1

)
f2,k−1

−Mf2
k C2,kGk−1dk−1 −Mf2

k ỹ2,k

(21)

where

ỹ1,k = C1,kx̃
∗
k/k−1 + v1,k, (22)

x̃∗
k/k−1 = xk − x̂∗

k/k−1, (23)
ỹ2,k = C2,kx̄k/k−1 + v2,k (24)

x̄k/k−1 = Akx̃k−1/k−1 + F x
1,k−1f̃1,k−1 + wk−1.(25)

Referring to (20) and (21), the estimator f̂k given by (15) is
unbiased if and only if Mf1

k and Mf2
k satisfy the following

constraints :

Mf1
k Σk = Irk (26)

Mf2
k Ek = Γk (27)
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where Ek =
[
C2,kF

x
2,k−1 C2,kGk−1

]
and Γk =[

Ip−rk 0(p−r)q

]
.

Let x̃∗
k/k−1, x̃k−1/k−1 and f̃1,k−1 be unbiased. The covari-

ance matrices of ỹ1,k and ỹ2,k are defined respectively by :

R̃1,k = ε
[
ỹ1,kỹ

T
1,k

]
= C1,kP

x∗
k/k−1C

T
1,k +R1,k

(28)

R̃2,k = ε
[
ỹ2,kỹ

T
2,k

]
= C2,kP̄

x
k/k−1C

T
2,k +R2,k

(29)

where
P x∗
k/k−1 = ε

[
x̃∗
k/k−1x̃

∗T
k/k−1

]
and P̄ x

k/k−1 =

ε
[
x̄∗
k/k−1x̄

∗T
k/k−1

]
.

Since the errors estimations ỹ1,k and ỹ2,k has unit variances
the least-squares (LS) solutions do not have a minimum-
variance. For that f1,k and f2,k can be obtained by weighted
least-squares estimation [20] with two weighting matrices
R̃−1

1,k and R̃−1
,k . Then, to have unbiased fault estimates, the

matrices gain Mf1
k and Mf2

k are obtained as follows :

Mf1
k =

(
ΣT

k R̃
−1
1,kΣk

)−1

ΣT
k R̃

−1
1,k (30)

Mf2
k = ΓkE

∗
k (31)

where

E∗
k =

(
ET

k R̃
−1
2,kEk

)+

ET
k R̃

−1
2,k (32)

is the generalized inverse of the matrix Ek.
The variances of the WLS solutions (20) and (21) are respec-
tively given by:

P f1
k = ε

[
f̃1,kf̃

T
1,k

]
=

(
ΣT

k R̃
−1
1,kΣk

)−1

, (33)

P f2
k = ε

[
f̃2,k−1f̃

T
2,k−1

]
= Mf2

k R̃−1
2,k

(
Mf2

k

)T

(34)

Referring to equations (10), (15), (20) and (21), the fault er-
ror estimate f̃k has the following form:

f̃k =
[
V1,k V2,k

] [ f̃1,k
f̃2,k

]
(35)

Using (35), the covariance matrix P f
k is given by

P f
k =

[
V1,k V2,k

] [ P f1
k P 12

k

P f21
k P f2

K

] [
V T
1,k

V T
2,k

]
(36)

where

P f12
k =

(
P f21
k

)T

= ε
[
f̃1,kf̃

T
2,k−1

]
= Mf1

k C1,k

[
P x
k/k−1C

T
2,k + S̃k

] (
Mf2

k

)T (37)

with S̃k = ε
[
x̃∗
k/k−1v

T
2,k

]
= −

(
F x
k−1M

f2
k +Kx∗

k

)
R̃2,k.

C. State estimation

In this subsection, we consider the estimation of the state.
The gain matrices Kx∗

k and Kx
k will be determined so that the

filter yields robust estimates state xk in spite of the presence
of the fault fk and the unknown disturbances dk . Referring
to equations (1) and (16) the state estimations error x̃∗

k/k−1

is defined as

x̃∗
k/k−1 = x̄k/k−1 −

(
Kx∗

k + F x
2,k−1M

f2
k

)
ỹ2,k

+(Gk−1 −Kx∗
k C2,kGk−1) dk−1

−Kx∗
k C2,kF

x
2,k−1f2,k−1

(38)

The estimator x̂∗
k/k−1 is unbiased if Kx∗

k satisfies the follow-
ing constraint to eliminate the terms f2,k−1 and dk−1 from
the error estimate (38).

Kx∗
k Ek = Γ∗

k (39)

where Γ∗
k =

[
0n×(p−rk) Gk−1

]
.

Lemma: The necessary and sufficient condition so that the
estimators (4) and (5) are unbiased as matrix Ek is full col-
umn rank, i. e.

rank(Ek) = rank(F x
2,k−1) + rank(Gx

k−1) (40)

Proof: The equations (27) and (39) can be written[
Mf2

k

Kx∗
k

]
Ek =

[
Γk

Γ∗
k

]
. (41)

A necessary and sufficient condition for the existence of the
solution to (41) is

rank

 Γk

Γ∗
k

Ek

 = Ek (42)

We expand (42) and obtain

rank

 Γk

Γ∗
k

Ek

 = rank

 Ip−rk 0(p−rk)×q

0n×(p−rk) Gk−1

C2,kF
x
2,k−1 C2,kGk−1


= rank

[
C2,kF

x
2,k−1 C2,kGk−1

]
= rank

(
C2,kF

x
2,k−1

)
+ rank (C2,kGk−1)

Finally, referring to the equations (8) and (9) , we will have

rank(Ek) = rank(F x
2,k−1) + rank(Gx

k−1)

However, this can be easily justified by considering that the
fault and the unknown disturbances have independent influ-
ences.
Referring to (38) and (39), the covariance matrix P x∗

k/k−1 has
the following form:

P x∗
k/k−1 = E

[
x̃∗
k/k−1(x̃

∗
k/k−1)

T
]

= (In − F x
2,k−1M

f2
k C2,k −Kx∗

k C2,k)P
x

k/k−1

×(In − F x
2,k−1M

f2
k C2,k −Kx∗

k C2,k)
T

+(F x
2,k−1M

f2
k +Kx∗

k )R2,k

×(F x
2,k−1M

f2
k +Kx∗

k )T . (43)
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The gain matrix is determined by minimizing the trace of the
covariance matrix (43) such that (39) is satisfied. Using the
Kitanidis method we obtain[

R̃2,k −Ek

ET
k 0

] [
Kx∗

k
T

Λ∗
k
T

]
=

[
R̃2,kM

f2T
k F xT

2,k−1 + C2,kP̄
x
k/k−1

Γ∗
k

] (44)

where Λ∗
k is the matrix of lagrange multipliers.

Equations (41) will have a unique solution. Accordingly, the
gain matrix Kx∗

k is given by

Kx∗
k =

(
P̄ x
k/k−1C

T
2,k − F x

2,k−1M
f2
k R̃2,k

)
×R̃−1

2,k (I − EkE
∗
k) + Γ∗

kE
∗
k

(45)

Using (1) and (17), the state estimation error x̃k/k has the
following form:

x̃k/k = (I −Kx
kC2,k) x̃

∗
k/k−1 −Kx

k v2,k (46)

Considering (44), the covariance matrix is determined as fol-
lows:

P x
k/k = ε

[
x̃k/kx̃

T
k/k

]
= P x∗

k/k−1 +Kx
kR

∗
kK

xT
k − V ∗

k K
xT
k −Kx

kV
∗T
k

(47)

where

R∗
k = C2,kP

x∗
k/k−1C

T
2,k +R2,k + C2,kS

∗
k + (C2,kS

∗
k)

T

V ∗
k = P x∗

k/k−1C
T
2,k + S∗

k

S∗
k = ε

[
x̃k/k−1v

T
2,k

]
= −

(
F x
2,k−1M

f2
k +Kx∗

k

)
R2,k

In order to obtain a minimum-variance estimate, we have to
minimize the trace of (46). Thus, the gain matrix Kx

k is given
by:

Kx
k =

(
P x∗
k/k−1C

T
2,k + S∗

k

)
βT
k

(
βkR

∗
kβ

T
k

)
βk (48)

Where βk is an arbitrary matrix which has to be chosen such
that βkR

∗
kβ

T
k has full rank.

The matrix P xf1
k is calculated by using (20) and (46), then

we obtain:

P xf1
k = ε

[
x̃k/kf

T
1,k

]
=

(
Kx

k (V
∗
k )

T − P x∗
k/k−1

)(
Mf1

k C1,k

)T

(49)

Remark:

1. If Gk = Bk = Dk = 0 and 0 < rank (F y
k ) ≤ p the

obtained filter is equivalent to ERTSF developed by [9].

2. If Gk = Bk = Dk = 0 and rank (F y
k ) = p the ob-

tained filter is equivalent to RTSF developed by [7].

3. In the case where F x
k = Bk = Dk = 0 and F y

k = 0 the
filter [2] is obtained.

4. In the case where F x
k = 0 ,F y

k = 0 and Gk = 0 we
obtain the standard Kalman filter.

IV. Applications

In this section, we propose the use of the resulting filter
to solve the estimation of simultaneous actuator and sensor
faults problem and to make a comparison with the existing
literature results in particular the ones of [17].

A. Illustrative example

We consider the same numerical example used in [?, ?]. The
linearized model of a simplified longitudinal flight control
system is the following:

xk+1 = (Ak +∆Ak)xk + (Bk +∆Bk)uk

+F a
k f

a
k + wk

yk = Ckxk + F s
kf

s
k + vk

where the state variables are the pitch angle δz , the pitch rate
ωz and the normal velocity ηy . The control input uk is the
elevator control signal. F a

k and F s
k are the matrices distribu-

tion of the actuator fault fa
k and sensor fault fs

k .

The presented system equations can be rewritten as follow:

xk+1 = Akxk +Bkuk + F x
k fk +Gkdk + wk

yk = Ckxk + F y
k fk + vk

where F x
k and F y

k are the matrices injection of the faults vec-
tor in the state and measurement equations.

F x
k = [F a

k 0]

F y
k = [0 F s

k ]

The term Gkdk represents the parameter perturbation in ma-
trices Ak and Bk:

Gkdk = ∆Akxk +∆Bkuk (50)

The system parameter matrices are:

Ak =

 0.9944 0.1203 − 0.4302
0.0017 0.9902 − 0.0747
0 0.8187 0

, xk =

 δz
wz

ηz


Bk =

 0.4252
−0.0082
0.1813

, Ck =


0.4 0.1 0.2
0.1 0.6 0.3
0.5 0.1 0.25
0.1 0.2 0.3

,

Qk = diag
{
0.12, 0.12, 0.012

}
, Rk = 0.12(I4×4)

We inject simultaneously two faults in the system,[
fa
k

fs
k

]
=

[
4us (k − 20)− 4us (k − 60)
−2us (k − 30) + 2us (k − 65)

]
where us(k) is the unit-step function. The first fault fa

k oc-
curs in the actuator between 20 and 60 and the second fault
fs
k occurs in the sensor for δz between 30 and 65. Thus, we

consider the cases of single and multiples faults. The un-
known disturbance is given by:

Gkdk = ∆Akxk + ∆Bkuk (51)

=

 1 0
0 1
0 0


︸ ︷︷ ︸

Gk

{[
∆a11 ∆a12 ∆a13
∆a21 ∆a22 ∆a23

]
xk +

[
∆b1
∆b2

]
uk

}
︸ ︷︷ ︸

dk

(52)
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Table 1: : Evaluation of the RMSE values
x̃1,k x̃2,k x̃3,k f̃1,k f̃2,k trace Px

k trace P f
k

0.7789 0.1941 0.2642 0.0804 0.2646 0.7772 0.0848

where ∆aij and ∆bi (i = 1, j = 1, 2, 3) are perturbations in
aerodynamic and control coefficients.
In the simulation, the aerodynamic coefficients are perturbed
by ±50%, i.e ∆aij = −0.5aij and ∆bi = −0.5bi.

We set P0 = 0.12eye(3), x0 =

 0
0
0

 and uk = 10.

In the previous table (Table 1), the Root Mean Square Errors
are given along with the traces of their steady-fault and state
estimation error covariances.
It can be seen that the proposed filter produces better esti-

mates of the state and faults. We primarily focus on simulta-
neous estimation of actuator and sensor faults in spite of the
presence of unknown disturbances.

B. Comparative Study

In this section, we will apply the proposed filter to treat two
different cases. The parameters of the systems (1) are given
by:

Ak =

 ak 0.1 0.2
0.1 0.6 0.3
0.2 0.1 0.25

, Dk =

 1
0.5
1.5


Bk =

 2
−1.5
0.5

, F x
k =

 0.5
1.5
0.8

0.7
0.1
0.9

 ,Gk =

 0
1
0


Ck =

 1 −1 0
0 1 0
0 −1 −1

,Qk = 0.1eye(3),

Rk = 0.12 eye (3), ak = 0.4 + 0.3 sin(0.2k), xk = x1,k

x2,k

x3,k


The initial value of the state is x0 =

 1
−2
1

 and P̄ x
0 =

eye(3).
The fault and the unknown input are given by:[

f1
k

f2
k

]
=

[
4us (k − 25) + 4us (k − 70)
4us (k − 30) + 4us (k − 65)

]
dk = 4us (k − 15) + 4us (k − 55)
where us is the unit-step function.
Two cases of F y

k will be studied:

(F y
k )

1
=

 2
0.6
0.2

0
0
0

 and (F y
k )

2
=

 0
0
0

1.4
0.3
1.6

 .

The simulation results are illustrated by these figures :
Figure 1 and Figure 5 presents the actual fault

vector[f1,k, f2,k] and their estimated values obtained by the
proposed filter. The estimation of three components of state
are presented in Figure2 and Figure6.
Convergence of the trace of the state covariance matrix
P x

k+1/k
are shown in Figure 3 and Figure7 respectively. Con-

vergence of the trace of the fault covariance matrix P f
k+1/k

are shown in Figure4 and Figure8 respectively. In table 2, the
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Figure. 1: Actual and estimated value of fault
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Figure. 2: Actual and estimated value of state
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Table 2: Evaluation of the rmse values
F y
k Filter x1

k x2
k x3

k f1
k f2

k

(F y
k )

1 Proposed filter 0.1899 0.0863 0.0863 0.6631 0.1231
SFEF filter 0.1899 0.0863 0.0863 1.128 0.1231

(F y
k )

2 Proposed filter 0.2813 0.0986 0.0986 0.4757 0.8756
SFEF filter 0.2813 0.0986 0.0986 0.9784 2.236
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Figure. 4: Trace of the covariance matrix P f
k
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Figure. 5: Actual and estimated value of fault
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Figure. 6: Actual and estimated value of state
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Figure. 8: Trace of the covariance matrix P f
k

root square errors (RMSE) of the state xk =
[
x1
k x2

k x3
k

]T
and the fault fk =

[
f1
k f2

k

]T
are given.

For example the RMSE of the first component of sate vector
is calculated by:

RMSE (x̃1,k) =

√
1
N

N∑
k=1

(x1,k − x̂1,k)
2

According to the simulation results Figure1- Figure 8 and Ta-
bles 1 and 2, we may conclude with the following results : In
all cases, the (State and fault estimation of linear stochastic
discrete time systems) SFEF filter [17] and the proposed fil-
ter gives the same values of the RMSE of the state estimator
error. The proposed filter gives smaller RMSE values of the
fault estimation errors

V. Conclusions

This paper presented a recursive optimal filter for simul-
taneously estimating the state and fault in the presence of
the unknown input in an unbiased minimum-variance sense
for discrete-time linear stochastic system in presence of un-
known disturbances, without any restriction on the direct
feedthrough matrix of the system. The advantages of this
filter are especially important in the case when we do not
have any prior information about the fault or unknown input.
This filter is applied efficiently to solve two problems. First-
ly, it estimates the actuator and sensor faults simultaneously.
Second, it establishes a comparative study with the existing
literature results.
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