
Journal of Network and Innovative Computing

ISSN 2160-2174 Volume 2 (2014) pp. 071-080

© MIR Labs, www.mirlabs.net/jnic/index.html

Dynamic Publishers, Inc., USA

Knowledge Collaborator Agent in Expert Locator

System: Multi-Agent Simulation in the Validation of

GUSC Model

Shahrinaz Ismail
1
 and Mohd Sharifuddin Ahmad

 2

1 Malaysian Institute of IT, Universiti Kuala Lumpur,

50250 Kuala Lumpur, Malaysia

shahrinaz@unikl.edu.my

2 College of Information Technology, Universiti Tenaga Nasional,

43000 Kajang, Malaysia

sharif@uniten.edu.my

Abstract: This paper presents a multi-agent simulation that

demonstrates the roles identified to assist human knowledge

workers, based on the Get-Understand-Share-Connect (GUSC)

Model. The system design is based on the content analysis from

an interview survey conducted on selected organisations in

Malaysia. A significant finding from the interview is the

existence of the Knowledge Collaborator role, which the

literature commonly refers to as the gatekeeper. According to

the interview respondents, Knowledge Collaborator locates

knowledge sources or experts upon request from the Knowledge

Seeker within an organisation, which is based on the needs. A

scenario of the mediation of Knowledge Seeker-Knowledge

Collaborator tasks is simulated in this paper, animated in an

agent-oriented development platform. This scenario is

expanded to Knowledge Collaborator-Knowledge Expert

mediation of tasks, to further prove the GUSC roles played by

the agents.

Keywords: software agent, multi-agent system, simulation,

knowledge collaborator, GUSC.

I. Introduction

The role of gatekeepers is almost unseen as significant to the

growth of knowledge management implementation in

organisations. While there are many citations by the

literature in social sciences domain, this role is less explored

in artificial intelligence domain despite the capability of the

technology to better assist the human aspects of

organisational knowledge management (OKM). This offers

an opportunity for this study to proceed where the literature

left off. In doing so, the bottom-up approach from personal

knowledge management (PKM) to OKM is adopted, since the

gatekeeper is of individualistic nature, or in other words

personal.

Personal knowledge management (PKM), or knowledge

management (KM) at individual knowledge workers’ level,

has been implemented and practised over the Web 2.0 tools

and technologies in the last decade, but the intelligence

underlying the PKM technology is somewhat ignored. In

contributing to this deficiency, we propose an agent-mediated

PKM system based on a model, which we called the

Get-Understand-Share-Connect (GUSC) model [1, 2, 3]. In

this model, software agent’s intelligence is exploited to

perform the tasks of managing personal knowledge on behalf

of human knowledge workers. This paper presents a part of

the work in progress of our research in agent-mediated

Personal Knowledge Management.

Recent research on PKM suggests that circumstances

dictate the need to find knowledge experts within and outside

of the organisations [1]. In technology and knowledge-

intensive organisations, the need to seek for new knowledge is

compelling, which demands the role of a gatekeeper to

identify the relevant and appropriate knowledge experts [2].

While the need persists, locating the right person who knows

the right knowledge presents a challenge to the intelligent

agent research community.

This paper aims to animate a knowledge collaborator as a

mediator in knowledge expert locating process for a

knowledge seeker. In order to achieve this aim, the objectives

are: to understand the agent environment based on real

human environment; to propose the system in visual diagrams;

and to develop the multi-agent system that shows the

simulation of knowledge collaborator in knowledge

seeker-knowledge expert environment. The paper then

presents the development of an agent-based simulation to

demonstrate an agent-mediated PKM framework [3].

Intelligent software agents are deployed in the simulation to

model the PKM processes, namely the get, understand, share

and connect (GUSC) processes in the simulation scenarios.

The simulation is based on the scenarios of

agent-mediation tasks performed by Knowledge Seeker,

Ismail and Ahmad 72

Knowledge Expert and Knowledge Collaborator.

II. Related Works

A. The Concept of a Gatekeeper

Often individuals know each other outside of formal

arrangements with official alliances, and interact beyond

official duties, leading to knowledge flows and learning [4].

This results in the unknown and unseen activities (of the

individuals) to the executives and managers. Even though

unseen, the network “is found to be a powerful, intangible

infrastructure that crosses organisational boundaries and

often into the World Wide/Semantic Web” [2]. These

individuals, from within a firm, are influenced by ongoing

relations with other persons within the firm, from other firms

and from non-firm organisations [5]. The relations are

beyond official organisational arrangements.

Sometimes, these individual knowledge workers take up

the role of a gatekeeper – “the key person who is exposed to

sources of knowledge outside the organisation and to whom

others within the organisation frequently turn to for

knowledge” [4]. In a recent study on agent-mediated PKM,

the ‘gatekeeper’ role is referred to as knowledge source or

internal knowledge expert [1]. Internal knowledge expert

here basically means that the gatekeeper is considered as “the

‘point of reference’, and the recognition of expertise

connected to this person depends on his/her

recommendations” [2]. For the purpose of this paper, a more

technical term is used to represent this role, which is

‘knowledge collaborator’.

On a technical aspect, intelligent software agents can be

mediated to find experts within social networks [2], where the

agents are capable of detecting “which people possess the

required expertise for solving a problem at hand” [6].

Software agents can also assess on how “some of the members

are recognised as experts by their colleagues in the

community” [6].

There are many aspects or criteria that could assist the

gatekeeper or knowledge collaborator to identify knowledge

experts, which is commonly depending on the situation, the

need and the required knowledge. This paper focuses on a

common scenario in organisations that implements

knowledge management at organisational level, namely

institutes of higher learning, oil and gas, telecommunication,

to name a few. These scenarios are derived from the previous

research, presented in 2013 [2].

B. The GUSC Model for Agent-mediation

Current research in agent-mediated knowledge management

(KM) shows promising results of intelligent agents

performing tasks on behalf of their human counterparts. At

this level of KM, the term used is personal knowledge

management (PKM), in which knowledge is managed at

individual human knowledge workers’ levels. In a recent

study on agent- mediated PKM processes [7, 8], the PKM

processes are defined in a cycle of ‘Get/retrieve knowledge’,

‘Understand/ analyse knowledge’, ‘Share knowledge’ and

‘Connect to knowledge source’ (i.e. GUSC), which are

translated into interactions between humans and agents.

These interactions are proven to be possible between

human-agent and agent-agent, while easing the

human-human interactions [3].

The order of the PKM processes between individuals (i.e.

GUSC) is found to be different when the tasks are mediated

using software agents. Instead of starting with G (i.e.

get/retrieve knowledge), the human-agent interaction starts

with C (i.e. connect), and this is followed by S, G and U (i.e.

CSGU). The difference in this sequence is due to the

“different environments in which knowledge is being

translated between tacit and explicit forms” [1]. The first

sequence (i.e. GUSC) represents the changes between tacit

and explicit forms of knowledge during the interactions

within a knowledge worker’s mind in managing personal

knowledge, whereas the second sequence (i.e. CSGU)

represents the processes when software agents are used to

mediate the task of finding knowledge experts on behalf of the

human knowledge worker [1].

In deploying the GUSC model, software agents are found to

have the capabilities that PKM processes need. Comparison

analysis is made on the capabilities of software agents based

on the definitions given by authors of the past two decades

against the GUSC processes. Consequently, the challenge of

making the agents to meet the expected capabilities is

resolved by assigning the agents with the GUSC roles [8]. For

example, software agents should be able to “engage in

dialogues and negotiate and coordinate the transfer of

information” [9] for which the processes of Get, Share and

Connect are found to be the required PKM processes. On the

other hand, the ability of software agents to “carry out some

set of operations on behalf of a user or another agent or

program with some degree of independence or autonomy, and

in so doing, employ some knowledge or representation of the

user’s goals or desires” [10] requires the agents to have the

role to Understand. The most cited definition of software

agent, “an encapsulated computer system that is situated in

some environment and that is capable of flexible action in that

environment in order to meet its design objectives” [11],

covers all the four processes of GUSC.

C. The BDI Agent Architecture and JACK

The Belief-Desire-Intention (BDI) agent architecture is

readily applicable to the task of modelling the reasoning

components (i.e. the humans) in simulation, hence the

decision in integrating BDI agents using the commercial

JACK [12] platform in this work. JACK is a mature,

cross-platform environment for building, running and

integrating commercial-grade multi-agent systems, built

upon a sound logical foundation: BDI

(Belief-Desire-Intention).

“BDI agents are programmed using goals (or events)

representing what the agent wants to achieve or respond to”.

Based on the goals, plans are triggered, describing different

ways to achieve them. These plans are made up of sub-goals,

which have associated actions. Agent beliefs are used in

selecting which plan to instantiate in a particular situation

 Knowledge Collaborator Agent in Expert Locator System 73

[13].

Based on these elements built in JACK (i.e. event, plan,

action and belief), the simulations can be designed and

developed in a proper manner for validation purposes.

Agents in JACK are defined in terms of their beliefs (what

they know and what they know how to do), their desires (what

goals they would like to achieve), and their intentions (the

goals they are currently committed to achieving). In general,

each agent is defined in terms of its goals, knowledge and

social capability, and is then left to perform its function

autonomously within the environment it is embedded in [12].

III. Methodology

An interview survey was conducted on eight respondents

from various organisations that portray the need and use of

gatekeepers, namely oil and gas, telecommunication, banking,

business project investment, government agencies and

universities [2]. An overall view of the interview results

pertaining the scenario where gatekeepers are required,

‘used’ and being useful for locating knowledge experts is

illustrated in the design phase.

For the system design phase, the Tropos software

development methodology is used, since it is found to be

suitable for agent-oriented modelling. The Tropos framework

has also been applied for developing multi-agent systems, and

it spans four phases of software development [14]:

 early requirements analysis: concerned with the

understanding of a problem by studying an

organisational setting – the output is an organisational

model which includes relevant actors, their goals and

inter-dependencies;

 late requirements analysis: where the system-to-be is

described within its operational environment, along

with relevant functions and qualities;

 architectural design: where the system’s global

architecture is defined in terms of subsystems,

interconnected through data, control and other

dependencies;

 detailed design: where behavior of each architectural

component is defined in further detail.

The analysis and design phases of the Tropos methodology

are useful to translate the interview results into a common

scenario for all organisations. This is illustrated step by step

in the next section, with highlights of the get, understand (or

analyse), share and connect (i.e. the G-U-S-C). The Tropos

modelling method complements our need to look at the

overall system in a nodal view to visualise the multi-agent

system that consists of agents as nodes, supplemented by the

environment, goals, and tasks.

Since this paper contributes to the research on

agent-mediated PKM, there is a need to validate the model.

To achieve this, we developed a computer simulation of the

GUSC model animated by software agents as a

proof-of-concept. To produce this, two parts are developed:

simulation on Knowledge Seeker-Knowledge Expert

interaction; and simulation on Knowledge Seeker-Knowledge

Collaborator interaction.

The simulation program is constructed with the scenario

settings, in which the conditions and behaviours of the

entities are analysed to produce a well-planned design of the

simulation process. This is followed by the simulation settings,

in which the agents and their environmental parameters are

defined.

In this simulation, there are three main agents that work in

conjunction with their human counterparts, namely the

Knowledge Seeker agent (i.e. the one who seeks for

knowledge sources), the Knowledge Expert agent (i.e. the one

whose expertise is sought for) and the Knowledge

Collaborator agent (i.e. the gatekeeper who accepts the task of

seeking knowledge expert from the knowledge seeker).

IV. From Data and Design

This section details the four phases of system design based on

the Tropos methodology and reveals the interview results in

sequence.

A. Early Requirements Analysis

Early requirements analysis is the first step in revealing the

organisational setting with which the scenario of knowledge

expert locating is analysed based on the interview results. The

output of this analysis is an organisational model that consists

of relevant actors, their goals and inter-dependencies. Figure

1 illustrates the scenario of how the actors (i.e. Knowledge

Seeker, Knowledge Collaborator and Knowledge Expert)

depend on each other based on their individual goals within

the defined scope of locating experts.

Figure 1. Early Requirements diagram

Ismail and Ahmad 74

From Figure 1, the Knowledge Seeker is illustrated with

two main goals: a soft goal of ‘understanding knowledge’;

and a hard goal of ‘get knowledge’. In order to achieve the

soft goal, the Knowledge Seeker needs to ‘locate a Knowledge

Expert’ and ‘verify knowledge reliability’. There is a need to

understand from the right person, especially when the person

is unknown or unreachable by the Knowledge Seeker, thus the

need of verifying the expertise of the Experts upon locating

them. On the other hand, ‘connect to Knowledge Expert’ can

only make the ‘get knowledge’ achievable, since without

connecting to the source (i.e. Knowledge Expert), the Seeker

could not get or receive new knowledge. This setting

complements the feedback received from the interview

respondents, which stated the need to locate knowledge expert

as and when new knowledge is required to fulfil certain tasks

new to a knowledge worker [2].

In the vast world of reachable information and knowledge,

it would be difficult for a knowledge worker to know where to

find the right source of knowledge and expertise, and it could

waste the person’s time in hunting for something new and yet

to be known. In huge organisations like oil and gas

companies, there is a unit or a person who is dedicated to

assist knowledge workers to locate experts and to ensure that

the experts are reliable and able to share the right knowledge

needed by them [2]. In this scenario (in Figure 1), the unit or

person known as the gatekeeper is termed as the Knowledge

Collaborator, who has two main goals: a soft goal of ‘identify

knowledge source’; and a hard goal of ‘suggest Knowledge

Expert’. Contributing to the soft goal, the Knowledge

Collaborator needs to request the expert found for connection

(i.e. ‘request to connect’), and ‘analyse reliability of

knowledge’ by assessing the area of expertise and Knowledge

Expert’s profile.

The concept of getting the right knowledge can only

happen if the knowledge expert is willing to share, thus the

need to request for consent to be connected before any sharing

is possible. The setting of the Knowledge Expert in Figure 1

shows the two main goals: the soft goal of ‘share expertise’;

and the hard goal of ‘receive request’. To an expert, sharing

knowledge could increase the reputation and credibility in the

area of expertise. In achieving the goal of sharing expertise,

the Knowledge Expert needs to make available the area of

expertise and profile (which is to be found or identified by the

Knowledge Collaborator), and respond to request from the

Knowledge Collaborator.

B. Late Requirements Analysis

“Late requirements analysis describes the system-to-be as an

actor within its operational environment, along with relevant

functions and qualities” [14]. Figure 2 shows the result of this

analysis based on the early requirements analysis and more

details from the interview result.

As mentioned in the early requirements analysis, a

Knowledge Expert has the intention to be known as a point of

reference in the area of expertise. In the World Wide Web

(WWW) and Web 2.0 technologies, an expert is commonly

quoted and tagged by public and other experts in the field. At

a certain point of advancement, a recommendation hit exists

that identifies tags and quotes as recommendations by these

people over the virtual network, termed as Recommender.

This external actor, called Recommender is the link between

the collaborator and the expert.

As shown in Figure 2, upon identifying the expert from

recommendation hits, the Knowledge Collaborator could

further query the knowledge source and analyse the expertise

reliability from the knowledge source. This Knowledge

Source is drawn as a node, in an actor symbol, which indicates

any form of source, such as database and knowledge

repository. The Knowledge Source is where the Knowledge

Expert would share, upload and make available the profile

and area of expertise, with an intention for others to be able to

locate them. Once the reliability of the expertise is verified,

the Knowledge Collaborator would ‘request to connect’

directly to the Knowledge Expert.

Figure 2. Late Requirements diagram

C. Architectural Design

“Architectural design defines the system’s global architecture

in terms of subsystems, interconnected through data, control

and other dependencies” [14]. It is moving towards the

design of the system, hence the unnecessary soft goals to be

presently drawn.

Since the original requirements illustrate the three main

actors or humans involved in the setting (i.e. Knowledge

Seeker, Knowledge Collaborator and Knowledge Expert), the

architectural design reveals these actors’ environment in

agent-based subsystems. The actors mentioned are the agents

that mediate the tasks on behalf of their human counterparts,

as shown in Figure 3. This design is basically similar to the

late requirements analysis, minus the soft goals that are

non-computable in the multi-agent system.

Figure 3. Architechtural Design diagram

 Knowledge Collaborator Agent in Expert Locator System 75

The external actors shown in Figure 3 (i.e. the

Recommender and the Knowledge Source) are not within the

scope of the simulation presented in this paper. It will be

further explored in future works, since it requires more

in-depth analysis in the semantic world. For the purpose of

this research, the activities performed by the said three actors

are ample.

D. Detailed Design

Encapsulating the three main actors as agents in a system, the

Expert Locator System is defined and illustrated in the

detailed design shown in Figure 4. Detailed design highlights

the behavior of each component identified during the

architectural design, and it reflects how the system is

developed in the next phase.

In general, Figure 4 shows the boundary of the Expert

Locator System developed and presented in this paper. The

GUSC concept is clearly shown in the early requirements

analysis, evolving into this stage of detailed design where the

concept dilutes within the tasks assigned to the agents.

Figure 4. Detailed Design diagram

Figure 4 shows the scope of the Expert Locator System,

with Knowledge Seeker, Knowledge Collaborator and

Knowledge Expert act as agents within the system. Even

though the human counterpart of Knowledge Expert could be

from outside of the organisation, an agent is assigned to this

human expert to assist the Knowledge Collaborator agent for

further communication and getting the connection possible.

The same goes to the Knowledge Source, an agent that sits on

the source of any form (i.e. databases, knowledge repositories,

etc.), even though the object/form is outside of the

organisational boundaries.

V. Scenario and Simulation Settings

There are two scenarios chosen to validate GUSC Model in

this agent simulation environment: an agent-mediated search

on a Knowledge Expert by the Knowledge Seeker; and an

agent-mediated search on a Knowledge Expert by the

Knowledge Seeker upon delegating the task to the Knowledge

Collaborator. In both scenarios, it is assumed that the agents

communicate with their human counterparts while

progressing the workflow.

In the first scenario, two agents are animated: Knowledge

Seeker and Knowledge Expert. In addition to this, a

simplified profile of the Knowledge Expert is used as the

search criterion. The scenario is about a Knowledge Seeker

locating a Knowledge Expert and requesting to ‘connect’ to

the expert. The Knowledge Seeker has the capability to ‘get’

knowledge from the belief set and ‘understand’ which profile

has the closest match with the knowledge and expertise it is

looking for. The belief set is a form of knowledge ‘share’ for

both the Knowledge Seeker and the Knowledge Expert. The

choice to connect is given to the Knowledge Seeker, and the

Knowledge Expert is also given the choice to connect once the

Knowledge Seeker agrees to send the request to connect.

In the second scenario, two agents are animated:

Knowledge Seeker and Knowledge Collaborator. The

simplified profile of the Knowledge Expert is used for the

Knowledge Collaborator to understand and suggest further

actions. The scenario is about a Knowledge Seeker locating a

Knowledge Expert and request to ‘connect’ with the

Knowledge Expert. In this case, the request to locate the

Knowledge Expert is sent to the Knowledge Collaborator.

The Knowledge Collaborator ‘understands’ the request of the

Knowledge Seeker, ‘gets’ the knowledge from the belief set,

‘understand’ the match of the knowledge needed from the

belief set, and ‘connect’ to Knowledge Seeker with a

suggestion on the chosen Knowledge Expert. The ‘sharing’ is

done by the Knowledge Expert in the belief set. In other

words, the Knowledge Collaborator is the middle person, or

the gatekeeper to the knowledge repository.

The introduction of the Knowledge Collaborator as the

gatekeeper is based on real case scenarios in organisations

that implement knowledge management system either

manually or automatically using the IT infrastructure.

According to the interview respondents during the survey [2],

gatekeepers facilitate personal knowledge management

within organisations as they become the point-of-reference in

connecting knowledge workers and knowledge experts from

within and without the organisations.

A. Simulation Settings for Knowledge Seeker Agent

The primary actor in this simulation is the Knowledge Seeker

agent (i.e. ks_agent), that initiates the whole simulation

process or reacts to the need of locating Knowledge Expert

from the human Knowledge Seeker. In other words, the

ks_agent mediates the task on behalf of its human counterpart,

the human Knowledge Seeker. The main tasks performed by

the ks_agent are helping the Knowledge Seeker (KS) locate

Knowledge Expert (KE) and sending requests for help on

behalf of KS. These tasks define the capability of the

ks_agent. The profile of the KS is stored in belief set (i.e.

ksBS) and it is ready to be shared when a request for help is

sent to the KE.

Figure 5 shows the JACK agent action diagram that

includes the elements in the KS agent’s (i.e. ks_agent)

environment. This is the basic form of agent environment for

ks_agent that mediates the tasks for the human Knowledge

Seeker.

The ks_agent commences the task with its ability to use the

plan, PlnFindKE, to find KE by searching the KE’s profile

Ismail and Ahmad 76

(kePRF) located in keData (assumed to be located randomly

in the WWW). The search for KE is based on the KS input

criteria, such as research topic, as this simulation is based on

the scenario of locating research knowledge expert. The plan,

PlnFindKE, looks up in the belief set kePRF for a subject

whose profile matches the search criteria. The moment a

match is found, ks_agent notifies its human counterpart,

reporting on the expert profile, such as name and date of birth.

For the purpose of a simple validation, we include the name

and date of birth as the profile fields to assist the Knowledge

Seeker in deciding based on the name (that could be a

well-known and recommended name/expert in the research

topic) and date of birth (to verify the expertise in terms of

experience via the age of the Knowledge Expert).

Figure 5. Agent Action Diagram for ks_agent

When the KS is informed of the search result, it is a choice

to be made by the human KS to command the ks_agent for the

next task. As KS commands the ks_agent to engage KE,

ks_agent executes the PlnSendReqKE plan to send help

request to KE, along with the Knowledge Seeker’s bio data.

Figure 1 graphically explains that the ks_agent has the

capability (ks_Cap) of using the send request to

PlnSendReqKE by using the KS’s belief set (ksBS). In order

to have this capability, the ks_Cap imports the belief set from

the ksBS stored in ksData.

In sending the request to KE, the ks_agent posts the event

EvtSendReqKE, which handles the plan PlnSendReqKE.

This post triggers the message to be sent to the KE agent (i.e.

MsgEvtRecReqKE). Figure 6 shows this flow of agent action.

Figure 6. Agent Action Diagram on ks_agent posting Event

to Send Request

Table 1 summarises the elements in the ks_agent

environment, based on the agent action diagram of Figures 5

and 6. The elements include the agent, belief set, profile,

capability and events.

Name / Role Code Name Description

Knowledge

Seeker (KS)

ks_agent Knowledge Seeker’s

agent that mediates the

human Knowledge

Seeker

KS’s belief

set

ksBS The location where the

Knowledge Seeker’s

profile/bio data is stored

KS’s

Capability

ks_Cap Knowledge Seeker’s

capability

KE’s profile kePRF Knowledge Expert’s

profile

KS’s Plan PlnFindKE Knowledge Seeker’s

plan to find/locate

Knowledge Expert

PlnSendReqKE Knowledge Seeker’s

plan to send request to

Knowledge Expert

KS’s Event EvtSendReqKE An event of Sending

Request to Knowledge

Expert

MsgEvtRecReq

KE

An event of Receiving

Request Message that is

sent to Knowledge

Expert

Table 1. Simulation settings of elements in ks_agent

environment.

B. Simulation Settings for Knowledge Expert Agent

An agent that mediates the human Knowledge Expert is

called the ke_agent. In general, ks_agent and ke_agent act as

intermediaries for the human KS and KE. As ke_agent

receives request from ks_agent, it triggers the PlnNotifyKE

plan to notify the human KE on the request along with the

information on KS, such as bio data. This is shown in the

agent action diagram in Figure 7. As shown in the figure, the

main tasks performed by the ke_agent are to notify KE on the

request from KS (PlnNotifyKE) and send a response to the

request on behalf of KE (PlnSendRespKE). These tasks

define the capability of the ke_agent (ke_Cap).

Figure 7. Agent Action Diagram for ke_agent

In the event KE accepts the request from KS, ke_agent

executes the plan, PlnSendRespKE to inform ks_agent with

KE’s email address (or other contact details shared by KE)

 Knowledge Collaborator Agent in Expert Locator System 77

attached in the message MsgEvtKSRecRespKE event. For

this purpose, the ke_agent posts the EvtSendRespKE event,

which handles the PlnSendRespKE plan. Upon receiving the

acceptance, ks_agent executes the plan called KENotifyKS,

displaying KE’s contact details. Figure 8 shows this process

as an extension to the previous Figure 7 (on ke_agent action)

and Figure 6 (on ks_agent action).

Figure 8. Agent Action Diagram on ke_agent posting Event

to Send Response to KS’s Request

Table 2 summarises the elements in the ke_agent

environment, based on the agent action diagram of Figures 7

and 8.

Name / Role Code Name Description

Knowledge

Expert (KE)

ke_agent Knowledge Expert’s

agent that mediates the

human Knowledge

Expert

KE’s

Capability

ke_Cap Knowledge Expert’s

capability

KE’s Plan PlnNotifyKE Knowledge Expert’s

plan to notify the

Knowledge Expert on

the request along with

the information about

Knowledge Seeker’s bio

data

PlnSendRespKE Knowledge Expert’s

plan to respond to the

Knowledge Seeker’s

request along with the

information on how to

contact the Knowledge

Expert (e.g. email

address).

KE’s Event EvtSendRespKE An event of Sending

Response to Knowledge

Seeker

MsgEvtKSRecR

espKE

An event of Receiving

Response Message that

is sent to Knowledge

Seeker

Table 2. Simulation settings of elements in ke_agent

environment.

C. Overview of ks_agent and ke_agent Interaction

Figure 9 shows the agent environment in which the ks_agent

and ke_agent interacts with their capabilities in triggering

events to send messages across the environment for the

Connect process. The agent simulation setting is further

developed in the physical model, with simple interface to

present a better simulation flow on how the agents work.

Figure 9. Overview of Agent Action Diagram on ks_agent

and ke_agent Interaction

D. Simulation Settings for Knowledge Seeker and

Knowledge Collaborator Agents

Similar to the previous section, the primary actor in this

simulation is the Knowledge Seeker agent (i.e. ks_agent), that

initiates the whole simulation process or reacts to the need of

locating Knowledge Expert from the human Knowledge

Seeker.

The Knowledge Seeker (KS) can send direct request to

Knowledge Collaborator (KC) via the interaction. The KS’s

agent (ks_agent) carries out the task by executing

PlnSendReqKC plan, with its capability ks_Cap. In order to

perform the task of sending request to KC, ks_agent posts the

EvtSendReqKC event that handles the plan (i.e.

PlnSendReqKC), which sends the message

MsgEvtRecReqKC event for the KC agent (kc_agent) to pick

up.

Figure 10. Overview of Agent Action Diagram on ks_agent

and kc_agent Interaction

The kc_agent has the capability (kc_Cap) of notifying the

human Knowledge Collaborator (using the PlnNotifyKC plan)

and sending response on behalf of the human Knowledge

Collaborator (using the PlnSendRespKC plan). Upon

receiving the request from ks_agent, kc_agent executes the

plan PlnNotifyKC to inform its human counterpart. As the

KC accepts or acknowledges this request, kc_agent executes

the PlnSendRespKC to inform ks_agent. The kc_agent posts

the event EvtSendRespKC that executes the PlnSendRespKC

to send the message MsgEvtKSRecRespKC to the ks_agent.

The ks_agent informs the Knowledge Seeker on the response

received from Knowledge Collaborator by executing the plan

called KCNotifyKS.

The whole process of interaction between ks_agent and

kc_agent is illustrated in Figure 10. Table 3 summarises the

elements in the kc_agent environment, based on the agent

Ismail and Ahmad 78

action diagram in Figure 10.

Name / Role Code Name Description

Knowledge

Collaborator

(KC)

kc_agent Knowledge Collaborator’s

agent that mediates the

human Knowledge

Collaborator

KC’s

Capability

kc_Cap Knowledge Collaborator’s

capability

KC’s Plan PlnNotifyK

C

Knowledge Collaborator’s

plan to notify the

Knowledge Collaborator

on the request along with

the information about

Knowledge Seeker’s bio

data

PlnSendRes

pKC

Knowledge Collaborator’s

plan to respond to the

Knowledge Seeker’s

request.

KC’s Event EvtSendRes

pKC

An event of Sending

Response to Knowledge

Seeker

MsgEvtKSR

ecRespKC

An event of Receiving

Response Message that is

sent to Knowledge Seeker

Table 3. Simulation settings of elements in kc_agent

environment.

VI. The Physical Model and Interface Design

The physical model of ks_agent and ke_agent is coded in Java

as a method of the Knowledge Seeker and Knowledge Expert

agent interaction. The ability to incorporate standard Java

code to provide this functionality is a positive aspect of the

JACK environment. In demonstrating the interaction

simulation in a graphically viewable format, the standard

GUI (Graphical User Interface) components in Java are used,

whose graphics context provides the capabilities of drawing

on the screen, as well as interacting with the underlying

operating system to perform the drawing [15]. A simple

graphical display is coded in Java, since the JACK Intelligent

Agents framework is also based on Java.

For the first case scenario, Figure 11 shows the graphical

display or interface design of the simulation, consisting two

nodes in circular shapes: Knowledge Seeker and Knowledge

Expert. The overall interface includes two frames: the right

frame displays the simulation in nodal form; and the left

frame displays the records of each profile stored in the

database. The profile data includes the research area which is

the Knowledge Seeker’s search criterion.

The search for Knowledge Expert is based on Research

Area. For the purpose of simulating the agents interaction (i.e.

limited functions are provided for the user or Knowledge

Seeker to key in), we list the Research Area in a combo box for

a quick selection on the Research Area options. Once the

research area is selected, clicking the “Find Expert” button

runs the search on the keyword.

Figure 11. Interface Design for Knowledge Seeker –

Knowledge Expert Interaction Prototype

Figure 12 shows the simulation flow for the Knowledge

Seeker-Knowledge Expert interaction. In the case of a

Knowledge Seeker looking for experts, if an expert is found

and it is reported back to the seeker, the ks_agent would send

a response message, “Knowledge Expert found: name:

[expert’s name] - DOB: [expert’s date of birth]. Do you want

to request for expert’s help?” The human Knowledge Seeker

needs to respond with a Yes/No option that activates the

connection and a question message attached to the connection

action. The Knowledge Expert receives this request from the

seeker with a message that starts with, “Request for help on:

[search keyword]”, followed by the content of the message.

Upon receiving request from the Knowledge Seeker, the

Knowledge Expert has the option to accept or deny the request.

The connection interaction between the Knowledge Seeker

and the Knowledge Expert is recorded in log file.

Figure 12. Simulation Flow for Knowledge

Seeker-Knowledge Expert Interaction

For the second scenario, the physical model of ks_agent

and kc_agent is also coded in Java as a method of the

Knowledge Seeker and Knowledge Collaborator agent

interaction. The interface design is developed in the same

environment as the simulation for ks_agent and ke_agent (as

discussed earlier). In other words, the interaction simulation

 Knowledge Collaborator Agent in Expert Locator System 79

of the ks_agent and kc_agent is also coded in Java with the

standard Java GUI components.

The search is also based on Research Area, via a selection

from the Research Area combo box. Once the research area is

selected, the “Request KC” button is used to run the search on

the keyword, which activates the agent to request for experts

from the Knowledge Collaborator. As shown in Figure 13, the

Knowledge Seeker is notified with a message, “You are

sending Knowledge Collaborator help request Topic [search

keyword]”.

The simulation is a time-step simulation with the time rate

of 600 milliseconds set for an iterative process that keeps on

synchronising the agents’ information and checking for new

incoming requests for knowledge expertise search in the

environment. If there is no request, the log file records,

“Check for incoming request. No incoming request.” Upon

receiving an incoming request, the Knowledge Collaborator

can view the message, “KS-Agent sends a request for help.

Topic: [message keyed in by Knowledge Seeker]. Please press

OK to acknowledge.”

Figure 13. Simulation Flow for Knowledge

Seeker-Knowledge Collaborator Interaction

VII. Conclusion and Further Work

This paper presents the proof-of-concept of a PKM (GUSC)

model by simulating a personal knowledge management

process of locating experts. It is an extension to our previous

work in [16]. The proof entails the deployment of a

multi-agent system that animates the tasks of a knowledge

seeker in connecting (C) to a knowledge expert (and via a

knowledge collaborator) and the ensuing get (G), share (S)

and understand (U) actions following the connection. The

result of the simulations demonstrates that the simulation and

animation of the tasks validates the GUSC model.

Even though the G, U, S and C are shown clearly only in

the early requirements analysis as soft and hard goals, it is

part of the whole process of expert locating mission that the

system is built for. The GUSC Model is still applied in other

forms despite goals, such as agent roles, where the agents’

tasks could be further defined according to the roles or

objectives like “get expert’s profile”, “share expert’s profile

with seeker”, and “understand recommendation points”.

Further development of the Expert Locator System may look

into these aspects in greater details.

In a nutshell, this is the first step in proving that agents can

be animated to perform real humans’ tasks, especially in

complementing OKM. It is based on the understanding of

knowledge workers’ way of managing their personal

knowledge by reaching out to knowledge experts. In making

the agents fully perform and are trusted to perform the tasks

will require a long-term exploration in a real organisation

environment.

References

[1] S. Ismail, and M.S. Ahmad. “Emergence of Social

Intelligence in Social Network: A Quantitative Analysis

for Agent-mediated PKM Processes”. In Proceedings of

the IEEE International Conference on Information

Technology and Multimedia (ICIMµ 2011), Nov. 2011.

[2] S. Ismail, and M.S. Ahmad. “Emergence of Personal

Knowledge Networks in Agent-mediated PKM

Processes: A Qualitative Analysis in Malaysian

Context”. In Proceedings of the International

Conference on Computer and Information Science

(ICCIS2012), Jun. 2012.

[3] S. Ismail, and M.S. Ahmad. “Effective Personal

Knowledge Management: A Proposed Online

Framework”, World Academy of Science, Engineering

and Technology (WASET), 72, pp. 542-550, 2012.

[4] F. Huber. “Contextualising the Role of Extra-Firm

Personal Networks as a Source of Work-Related

Knowledge”. In Proceedings of the Organisational

Learning, Knowledge and Capabilities (OLKC)

Conference, 2011.

[5] F. Huber. “On the Socio-spatial Dynamics of Personal

Knowledge Networks: Formation, Maintenance and

Knowledge Interactions”, Environment and Planning A.

[6] J. M. Pujol, R. Sanguesa, and J. Delgado. “Extracting

Reputation in Multi Agent Systems by Means of Social

Network Topology”. In Proceedings of the AAMAS’02,

2002.

[7] J. Grundspenkis. “Agent based approach for

organization and personal knowledge modelling:

Knowledge management perspective”, Journal of

Intelligent Manufacturing, 18, pp. 451-457, 2007.

[8] S. Ismail, and M.S. Ahmad. “Emergence of Personal

Knowledge Management Processes within Multi-agent

Roles”, in PKAW 2012, LNAI 7457, D. Richards and

B.H. Kang (eds.), Springer, Berlin, pp. 221–228, 2012.

[9] M.H. Coen. SodaBot: A Software Agent Construction

System, MIIT AI Laboratory, Cambridge, 1991.

[10] D. Gilbert, M. Aparicio, B. Atkinson, S. Brady, et al.

IBM Intelligent Agent Strategy, 1995.

[11] N.R. Jennings, P. Faratin, A.R. Lomuscio, S. Parsons, C.

Sierra, M. Wooldridge. “Automated Negotiation:

Prospects, Methods and Challenges”, International

Journal of Group Decision and Negotiation, pp. 1-30,

2000.

Ismail and Ahmad 80

[12] AOS Group. “JACK”, AOS: Autonomous

Decision-Making Software, 2011.

[13] L. Padgham, D. Scerri, G. Jayatilleke, S. Hickmott.

“Integrating BDI Reasoning into Agent Based Modeling

and Simulation”. In Proceedings of the 2011 Winter

Simulation Conference, S. Jain, R. R. Creasey, J.

Himmelspach, K. P. White, and M. Fu (eds.), pp.

345-356, 2011.

[14] M. Kolp, P. Giorgini, J. Mylopoulos. “Information

Systems Development through Social Structures”. In

Proceedings of the ACM 14th International Conference

on Software Engineering and Knowledge Engineering

(SEKE ‘02), Jul. 2001, pp. 183-190, 2001.

[15] H.C. Chua. “Customer Graphics Programming – Java

Programming Tutorial”, Yet Another Insignificant...

Programming Notes, 2013, http://www.ntu.edu.sg/

home/ehchua/programming/java/J4b_CustomGraphics.

html.

[16] S. Ismail, T.D. Nguyen, and M.S. Ahmad. “A

Multi-agent Knowledge Expert Locating System: A

Software Agent Simulation on Personal Knowledge

Management (PKM) Model”. In Proceedings of the

International conference on Intelligent Systems Design

and Applications (ISDA), Dec. 2013.

Author Biographies

Shahrinaz Ismail Born in Kedah, Malaysia, on May 9
th
,

1976, she earned a Bachelor of Applied Science with

Honours in mathematical modelling and computer

modelling, from University of Science, Malaysia (USM),

Malaysia in 1999. She continued her study in Master of

Science in Information Technology in Business (IT in

Business) from University of Lincoln, United Kingdom in

2004, as part-time during her career in a Malaysia based

quantity surveying firm. She completed her Doctor of

Philosophy in Information and Communication Technology

(ICT) from Universiti Tenaga Nasional (UNITEN),

Malaysia, in July 2014, which was also a part-time basis

along with her lecturing career. Her major field of study is

agent-mediated knowledge management and technology in

education. She is currently into a new interest of artificial

intelligence in quality management system.

Mohd Sharifuddin Ahmad Born in Johor, Malaysia, on

April 30
th
, 1957, he received his Bachelor of Science in

Electrical and Electronic Engineering from Brighton

Polytechnic, UK in 1980. He started his career as a power

plant engineer specialising in Instrumentation and Process

Control in 1980. After completing his Master of Science in

Artificial Intelligence from Cranfield University, United

Kingdom in 1995, he joined UNITEN as a Principal

Lecturer and Head of Department of Computer Science and

Information Technology. He obtained his PhD from Imperial

College, London, United Kingdom in 2005. He has been an

Associate Professor at UNITEN since 2006. His research

interests includes applying constraints to develop

collaborative frameworks in multi-agent systems,

collaborative interactions in multi-agent systems and tacit

knowledge management using artificial intelligence (AI)

techniques.

