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Abstract:
A particular case of Recurrent Neural Network (RNN) was in-
troduced at the beginning of the 2000s under the name of Echo
State Networks (ESNs). The ESN model overcomes the limi-
tations during the training of the RNNs while introducing no
significant disadvantages. Although the model presents some
well-identified drawbacks when the parameters are not well ini-
tialized. The performance of an ESN is highly dependent on its
internal parameters and pattern of connectivity of the hidden-
hidden weights Often, the tuning of the network parameters can
be hard and can impact in the accuracy of the models.
In this work, we investigate the performance of a specific boost-
ing technique (called L2-Boost) with ESNs as single predictors.
The L2-Boost technique has been shown to be an effective tool
to combine “weak” predictors in regression problems. In this
study, we use an ensemble of random initialized ESNs (without
control their parameters) as “weak” predictors of the boost-
ing procedure. We evaluate our approach on five well-know
time-series benchmark problems. Additionally, we compare
this technique with a baseline approach that consists of aver-
aging the prediction of an ensemble of ESNs.
Keywords: Boosting, L2-boosting, Echo State Network, Time-
series modeling, Reservoir Computing, Ensemble Methods

I. Introduction

Boosting is a general procedure for improving the accuracy
of an ensemble of methods. It has been successful used
in supervised learning problems since its apparition in the
1990s [1–3]. Several variations of the original Boosting idea
have been introduced over the years [4, 5], one of the most
popular is called AdaBoost [3]. At the beginning, Boosting
was used in problems where the output features were label
or discrete responses (classification problems). An analogy
between AdaBoost and additive models was studied in [4].
This connection was essential for the extension of Boosting
for solving problems where the output features are continu-
ous variables (regression problems). Bühlmann et al. devel-
oped a variation of the Boosting technique called L2-Boost
that is constructed from an additive model and the functional
gradient descent method [5].
Since the early 2000s, a computational paradigm called
Reservoir Computing (RC) has gained prominence in the

Neural Computation community. In a RC model there are
two well-separated concepts: a dynamical system and a
memory-less function. The purpose of the dynamical system
is to encode the spatio-temporal information of the input pat-
terns into a spatial representation. At each time this dynami-
cal system is characterized by its state that is called reservoir
in the RC literature. This non-linear transformation is most
often realized by a Recurrent Neural Network (RNN) with a
large pool of interconnected neurons. A distinctive principle
of a RC model is that the parameters of the dynamical system
(the RNN weights) do not participate in the training process.
That is, once the reservoir parameters are initialized, they re-
main fixed during the training process. Another part of the
model is a memory-less supervised learning tool called read-
out structure. This part is designed to be robust and fast in
the learning process.
The RC models has been applied in the neuroscience area for
processing cognitive information in the neural system. [6].
Furthermore, they have proven to be extremely effective tools
for time-series problems in the area of Machine Learning.
For instance, as far as we know one of the most popu-
lar RC models the Echo State Networks (ESN) [7], has the
best known learning performance on the Mackey-Glass time-
series prediction problem [8, 9]. In this article, we will con-
centrate in the ESN model for solving time-series problems.
The reservoir in the ESN model is composed by a RNN with
sigmoid neurons, and the readout part of the model is a lin-
ear regression. The weight connection between neurons in
the reservoir are collected in a matrix that we will call reser-
voir matrix. The main global parameters of the ESN model
are: the input scaling factor, the spectral radius of the reser-
voir matrix and the pattern of connectivity among the reser-
voir units. The setting of these parameters often requires the
human expertise and several empirical trials [10]. As a con-
sequence, the setting procedure can be expensive in compu-
tational time. For instance, the time complexity of an algo-
rithm that computes the spectral radius of a N ×N matrix is
equal to O(N4) [11].
The goal of this article is to investigate the performance of
an automatic procedure to combine single weak ESNs and
the L2-Boost technique. We develop an automatic technique
based on L2-Boost, which combines the prediction of several
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random initialized ESNs in order to produce a highly accu-
rate tool. We use the term weak ESN for an ESN without
checking and computing the spectral radius. We use the ter-
minology weak due to the fact that this particular ESN is not
optimal. The main advantages of the procedure presented in
this article are:

• Descend the computational effort. In order to gain in
the computational effort, the approach consists of com-
bining weak ESNs. The procedure avoids to tune the
reservoir parameters, which can often have a high com-
putational cost. It uses only a uniform random initial-
ization of the weights. Note that, there are not a control
of the spectral radius, then some single weak ESNs can
have unstable dynamics.

• The procedure is automatic. The procedure does not
require external human expertise for setting the model
parameters, and for evaluating the model performance.

• The technique has a new parameter used for overfitting
control. This parameter which we will that comes from
the L2-Boost technique.

We present empirical results of the procedure introduced in
this paper on a wide range of benchmark problems. We
compare these performances with the accuracy obtained by a
single ESN. Furthermore, we realize a comparison with the
accuracy of a baseline approach that computes the average
among single ESN models. Each single ESN is indepen-
dently initialized and adjusted during the learning process.
There is empirical evidence in the Machine Learning liter-
ature that shows that this baseline approach sometimes per-
forms better than other ensemble methods [12].
This work is a revised and expanded version of the arti-
cle [13].
The structure of this article is organized as follows. In Sec-
tion II, we start with a specification of supervised learning
problems with temporal data. Next, we present an overview
about the family of additive models. Subsection II-C intro-
duces the L2-Boost technique. In Section III, we present the
Reservoir Computing paradigm. Particularly, we focus on
the Echo State Network model in III-A. In Subsection III-B
is presented a formalization of the procedure introduced in
this article. Section IV describes the empirical results. This
section starts with a description of the benchmark problems.
Next, we present the reached results. Finally, last section
provides conclusions and future work.

II. Background

In this Section, we start specifying the context where the
ESN model and the L2-Boost technique are applied. Next,
we present the additive models and we introduce a descrip-
tion of the L2-Boost technique.

A. Problem Specification

We begin specifying a supervised learning problem. Given
a data set L = {(x(t),y(t)) : t = 1, . . . , T} where the
points x and y are either a class or a numerical response. We
denote by Nx the dimension of the input vector x, and Ny

the dimension of the output vector y. We suppose that the

mapping between the input x and the output y is given by
certain unknown function F (·). The goal consists in learn-
ing a parametric function F̂ (x(t),L) such that certain error
distance between F̂ (x(t),L) and y(t) is minimized for all t.
The problem is called regression problem when the learning
set has output numerical variables. Otherwise, it is named
classification problem. In the case of regression problems, it
is recommended to use the a quadratic distance [14]. Even
though we can also use a quadratic distance in classification
problems, it is recommendable to use the Kullback-Leibler
distance in this domain [14].
An ESN model is mainly used for solving supervised learn-
ing tasks, wherein the data set presents temporal depen-
dencies. Although, it can be also used for non-temporal
supervised learning problems [9]. In this article we will
concentrate only in temporal learning tasks with real out-
put variables (y(t) ∈ RNY , for all t). In this work,
we perform the models using a standard discrete time.
We want to forecast some aspect of the output feature
y at time t + k, using some aspect of the informa-
tion available at current time t, that is given the collec-
tion ((x(t),y(t)), (x(t−1),y(t−1)), (x(t−2),y(t−2)), . . .) we
would like to predict the value y(t+k) (k > 0) [15]. In
this case, the goal consists in estimating a mapping F̂ (·) for
predicting y(t+k) for some k > 0, such that some distance
between F̂ (·) and y is minimized.

B. Additive Models

In [4] was analyzed the Boosting model under the
form of an Additive model. Given a set of functions
f (m) : RNX → RNY , m = 1 . . . ,M characterized by a set
of parameters θ and expansion coefficients β,

f (m)(x) = β(m)h(x, θ(m)),

an additive model has the following form

F (x) =

M∑
m=1

f (m)(x). (1)

The functions {h(x; θ)}M1 are named basis functions. They
are not fixed a priori and are selected depending of the cost
function used and the data set. An important parameter of the
model is the number of basis functions (M ) considered in the
expression (1). This parameter controls the generalization
error of the model. Since the main goal in a learning task is to
find a predictor with low generalization error, the parameter
M has an important role in the accuracy of an additive model.

C. The L2-Boost Procedure

A relationship between the gradient descent technique and
stage-wise additive expansions was introduced at the begin-
ning of the 2000s [16]. The introduction of the gradient de-
scent algorithm using a boosting approach was an essential
contribution in the field of ensemble learning methods [16].
It allowed to start to use boosting in regression problems [5].
A Boost method for regression problems with quadratic error
distance was introduced under the name of L2-Boost in [5].
We present the L2-Boost technique in Algorithm 1. Other
boosting variants were presented for other kind of distances,
some of them are described in [4, 5, 16].
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We refer by epoch to the iteration of the training algorithm
through all the patterns in the training set [17]. At each epoch
m+ 1, the basis function h(m+1)(·, θ) is fitted to the current
residuals: y(i) − F̂ (m)(x(i)), for all i. Unlike other boost-
ing techniques such as Adaboost, L2-Boost does not present
any re-weighting. Another difference between L2-Boost and
other boosting methods is that L2-Boost presents a tendency
to over-fit the data [5]. The model with contracting linear
learners converge to the fully saturated model [5]. Each
boosting epoch contributes to additional overfitting, thus the
selection of the weak learners and the parameter M is an
essential task for this device. In practice, few boosting itera-
tions are enough to achieve good performances avoiding the
overfitting phenomena.

Algorithm 1 The L2-Boost algorithm.

Require: L, M , h(x, θ)

Fit an initial model using a least squares fit (see [18]):
F̂ (0)(·) = h(·, θ);
for (m = 1, . . .M) do

Compute the residuals for all pattern i:
e(i) = y(i) − F̂ (m)(x(i));
Fit the model f̂ (m+1)(·) parametrized as
f̂ (m+1)(x) = h(x, θ) to the current residuals e
using the least squares fit;
Update: F̂ (m+1)(·) = F̂ (m)(·) + f̂ (m+1)(·);

end for
Return the F̂ (M)(·) function;

III. Modeling Time-series with Echo State Net-
works

The Recurrent Neural Networks (RNNs) are powerful tools
for solving time-series benchmarks. They are computational
methods that operate in time. Considering terminology of
graphs, in a RNN at least one circuit is presented in its topol-
ogy. The circuits of the network enable to store temporal
information, in order to learn and memorize the input his-
tory [9]. Each circuit creates an internal state which makes
the recurrent network a discrete time state-space model. At
each time, the RNN receives an input pattern. Next, the net-
work update its hidden state via a non-linear activation func-
tion using the input pattern and the network state at the prece-
dent time [19]. There is a general consensus in the commu-
nity that considers the RNN as powerful tool for forecasting
and time-series prediction.
In spite of that, in practice the model presents some draw-
backs. The most important is that is hard to train a RNN
using gradient descent methods [20]. The training methods
that use the first differential information have often stability
problems and high numerical complexity. As a consequence,
much longer training times are necessary to adjust the net-
work weights. In [20] is analyzed the main limitations of the
algorithms of the gradient descent type for training RNNs.
These drawbacks are identified under the names of vanish-
ing and the exploding gradient problems [20]. The vanishing
gradient phenomena occurs when the norm of the gradient
decreases arbitrarily fast to 0. The exploding gradient phe-

nomena refers to the opposite, when the gradient norm large
increases during the training process [21]. Recently, an ef-
fective algorithm to train RNN was introduced [19], the al-
gorithm uses the Hessian-free Optimization for setting the
network parameters.
Reservoir Computing (RC) models appear as a good alterna-
tive for RNNs. The two pioneering RC models are Echo State
Network (ESN) [7] and Liquid State Machine (LSM) [22].
This computational paradigm covers the main limitations re-
lated to learning processes in RNNs obtaining acceptable
performance in practical applications [9]. In a RC model
there are at least two well-differentiated structures: a dynam-
ical system called reservoir and another one called readout.
The readout is a supervised learning tool for training with
non-temporal data. For example: feedforward neural net-
work, linear regression, decision trees, etc. A main charac-
teristic of a RC model is that the weights involved in cir-
cuits are deemed fixed during the learning process. Thus,
the matrix with the weight between reservoir units (reser-
voir matrix) is initialized in an arbitrary way and it remains
unchanged during the learning process. The training al-
gorithm is restricted to update the weights in the readout
structure. Over the last years several kinds of dynamical
systems have been used for generating the reservoir state,
models include: Backpropagation-decorrelation Recurrent
Learning [23], Leaky Integrator Echo State Networks stud-
ied [24], Evolino [8], Intrinsic Plasticity [25], Echo State
Queueing Networks [26], Reservoir Computing and Extreme
Learning [27], and so on.

A. Formalization of the Echo State Network Model

In this work related to the L2-Boost technique and the RC
methods, we only study the L2-Boost with the ESN model.
An ESN reservoir is a RNN from an input space RNx into a
larger space RNs with Nx � Ns. The connection between
input and hidden neurons are collected in a Ns ×Nx weight
matrix win. The connections among the hidden neurons are
represented by a Ns × Ns weight matrix wr. A Ny × Ns

weight matrix wout represents the readout weights. At any
time t, the information from the input pattern and the past is
represented in a state vector

s(t) = tanh(winx(t) +wrs(t−1)). (2)

At any time t, the output prediction y(t) ∈ RNy is generated
using the input pattern and the reservoir state information.
Most often is computed using a linear regression:

y(t) = wout[x(t)|s(t)], (3)

where ·|· is the vertical concatenation of the vectors. For
the sake of the notation simplicity, we omit the bias term, a
constant term is included in all the regressions.
In [7] was analyzed the stability of the reservoir dynamics
in the ESN model. Under certain algebraic conditions the
reservoir state only depends (asymptotically) of the inputs
and the network topology. It becomes independent of its ini-
tial conditions [9]. These conditions were summarized in
the Echo State Property (ESP) [7]. In practice, the stabil-
ity of the ESN is almost always ensured when the spectral
radius of the reservoir matrix is less than 1 [9, 28]. As a con-
sequence, the reservoir weights are appropriately scaled in
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order to have a spectral radius less than 1. To scale the pa-
rameters is necessary to compute the spectral radius of the
reservoir matrix. The computation of the spectra requires an
important computational effort [11]. Some attempts to gen-
erate a procedure for initializing the RC models were intro-
duced in [11, 25, 29–31].

B. L2-Boost Using the ESN Model for Time-series Process-
ing Information

In this article, we investigate the performance of using L2-
Boost in temporal learning tasks, and we consider as weak
learner predictors a set of ESNs with random initialization.
Given an arbitrary parameter M the procedure is as follows.
We initialize an ESN in a random way. The initialization
consists in selecting the size of the network as well as the
pattern of connectivity. We consider a reservoir with fixed
sparse connections. We do not control the spectrum norm of
the reservoir weight. A guide about the initialization proce-
dure can be seen from [10]. We expand the input information
using the ESN reservoir given by the expression (2), thus we
obtain s(t), ∀t. Next, we apply Algorithm 1. Finally, we ob-
tain predictor F (M)(·). The approach is summarized in Al-
gorithm 2. In our experiments we use ridge linear regression
for computing the readout weights wout [28].

Algorithm 2 The L2-Boost with the ESN model.

Initialize an ESN following the comments in Subsec-
tion III-B;
Compute the temporal expansion of L using (2);
Generate the set {(s(t),y(t)),∀t};
Apply the Algorithm 1;
Return F̂ (M)(·);

In order to evaluate the performance of this procedure, we
compare the reached accuracy of the L2-Boost technique
with a simple baseline approach [17]. The baseline approach
consists in combining K single predictors (in our case the
learning predictors are ESNs). We consider random initial-
ized reservoirs, without control of the reservoir spectrum
norm. In the baseline method, we train independently each of
these single ESNs. The final prediction is the average among
the single predictions.
For statistical comparisons between the methods we consider
K = 30. We remark again that we do not scale the reservoir
weights for obtaining the ESP. Even though some ESN mod-
els can present good accuracy, other ones can be weak pre-
dictors. Additionally, we compare our performances with the
performance obtained when single ESNs with “good” tuning
of the reservoir parameters are used. For that, we use the
results presented in the RC literature.

IV. Empirical Results

We begin this section describing the benchmark problems.
Next, we specify the experimental setup. We concludes this
section with an analysis of our empirical results.

A. Description of the Benchmark Problems

We use the following range of time-series benchmarks:

• Fixed kth order NARMA. This data set presents a high
non-linearity and is widely used in the RC literature.
We generate the NARMA serie following the descrip-
tion in [28, 32],

b(t+ 1) = α1(t) + α2b(t)

k−1∑
i=0

b(t− i)

+α3s(t− (k − 1))s(t) + α4,

where s(t) ∼ Unif [0, 0.5] and the constants values are
shown in Table 1. In order to evaluate the memorization
ability of the model, we consider two simulated series
when k = 10 and k = 30. The task consists to predict

k α1 α2 α3 α4

10 0.3 0.05 1.5 0.1
30 0.2 0.004 1.5 0.001

Table 1: Parameters considered for the fixed kth order
NARMA serie with k = 10 and k = 30.

the value y(t+1) based on the history of y(t) up to time
t. We used the first 200 samples as initial washout in
both the training and test procedure. The regularization
parameter used was 0.00001.

• The Santa Fe Laser data set [33]. It is an experimen-
tal data that contains the intensity pulsations of a real
laser recorded by a LeCroy oscilloscope. The data is a
cross-cut through periodic to chaotic intensity laser pul-
sations. These pulsations more or less follow the theo-
retical Lorenz model of a two level system [33]. In this
problem, the task consists to predict the next measure
y(t + 1), given the precedent values up to t. The orig-
inal data only consists of 1000 measurements, we used
for training 499 samples and for testing 500 samples.
We used a washout of 10 samples. The regularization
parameter γ was 0.001.

• Henon Map data set. It is a prototypical invertible map
with chaotic solutions proposed in [34]. The data is gen-
erated by

y(t+ 1) = 1− 1.4(y(t))2 + 0.3y(t− 1) + z(t+ 1),

where the noise is z(t) ∼ N(0, 0.05). The data is nor-
malized in [0, 1]. The goal is to predict the next value
y(t + 1) with the past information up to t. We consid-
ered a training data with 3995 samples and a test data
with 795 samples. The regularization parameter γ used
was 0.001. We use an initial washout composed by 100
samples. The network topology has 3 input units set
with the last two precedent y(t) values and the noise at
current time.

• Freedman’s non linear time data set [35]. The data is
generated by

y(t+ 1) = g(y(t)),

where:

g(x) =

{
2x, ifx ≤ 0.5,
2− 2x, x > 0.5.
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We consider a very short data set. The length of the
training data was 30 and the test size was 19. The ini-
tial value is y(0) = 0.23719. The initial washout con-
sidered only was of 3 samples. The network topology
has only one input unit, several reservoir units and one
output unit. The regularization parameter γ used was
0.001.

B. Experimental Setup

Initial Train Test
DATA Washout γ samples samples

10th NARMA 200 0.00001 1400 2400
30th NARMA 200 0.00001 1600 2600
Santa Fe Laser 10 0.001 499 500

Henon Map 100 0.001 3995 795
Freedman’s 3 0.001 30 19

Table 2: Parameter setting of the benchmark problems. In
all cases, we initialize the input weights (win) using Uni-
form distribution in [−0.2, 0.2], and we initialize the reser-
voir weights with an Uniform distribution in [−0.8, 0.8].

We summarize the setting of the main parameters related to
the benchmark problems in Table 2. The table presents the
initial washout period, the regularization parameter (γ) of the
linear ridge regression, and the number of train and test sam-
ples for each benchmark problem.
The benchmarks selected have been widely used in the RC
literature [7, 28, 31, 36]. In all cases, we use the Normal-
ized Mean Square Error (NMSE) as measure of accuracy
model [9]. The learning method used for computing the out-
put weight matrix wout was the offline ridge regression. This
algorithm has a regularization parameter γ that we adjust it
for each benchmark problem. The pre-processing data step
consisted in normalizing the patterns in the interval [0, 1] We
investigated the algorithm performance for several reservoir
sizes. The range of the reservoir size values is specified for
each benchmark problem. The connection between the input
and reservoir layer is fully connected with random weights in
[−0.2, 0.2]. The reservoir matrix is initialized using Uniform
distribution in [−0.8, 0.8].

C. Result Analysis

Table 3 shows results reported in the RC literature for these
benchmarks when a single ESN model was used as model
predictor. Table 4 presents the train set accuracy reached
on the Henon Map data set. The columns 2, 3 and 4 show
the NMSE reached with L2-Boost with ESNs for M epochs
(M = 3, 4 and 5), respectively. Column 5 of Table 3 shows
the accuracy of the baseline approach, that it averaging the
prediction of 30 ESNs. The columns of the table are written
using a scientific notation.
Table 4 illustrates the accuracy of the models during the
training. The NMSE corresponds to the training data of the
Henon Map data set. We present this table in order to illus-
trate the tendency of overfitting of L2-Boost with ESN. The
additive model converge very fast to the solution, for this
reason the columns 3 and 4 of Table 4 are very similar. The

model with larger M performs better over the train data, but
it has problems of generalization. We found this characteris-
tic in all benchmarks. As a consequence, we can affirm that
the parameter M has a relevant impact in the control of the
overfitting phenomenon. We can found a similar remarks for
the L2-Boost technique in non-temporal learning tasks [5].
Figure 2 illustrates the NMSE reached according the reser-
voir size for different M values for the 30th NARMA data
set. This figure shows the training error, we can see the evo-
lution of the NMSE versus the size of the reservoir. We
present few values of reservoir size between 6 till 11. Fig-
ures 1 and 3 show the NMSE of the test data versus the
reservoir size for the 10th and 30th order NARMA data set,
respectively. These figures show 4 curves, the black one
(with points represented by dots) corresponds to the base-
line method which combines several single ESNs. The other
curves correspond to the L2-Boost-ESN with different num-
ber of epochs M = 6, 8 and M = 10. We can not affirm that
the procedure of L2-Boost with single weak ESNs performs
better than optimal single ESNs. The accuracy it is also of
the same order that results presented in the RC literature us-
ing a single well-initialized ESN [28, 31].
Figure 4 illustrates the evolution of the NMSE for the reser-
voir size of the test data of the Santa Fe Laser benchmark.
The error was computed for the L2-Boost with ESNs for
M = 4, 6 and M = 8 and the baseline approach averag-
ing 30 ESNs. Figure 5 shows the accuracy reached for the
models on the Freedman test data set. The graphic shows
the evolution of the L2-Boost with ESNs for M = 4, 5 and
M = 5 and the baseline approach. In all graphics, we can see
that when the reservoir increases its size the procedure L2-
Boost with ESNs and the baseline approach decrease their
test error. This behavior about the impact of the reservoir
size on the accuracy of the model, also happens with single
ESNs [10, 28, 31].

DATA ACCURACY Nx REF.
10TH NARMA 0.166 (NMSE) 50 [28]

0.0425 (NMSE) 200 [28]
30TH NARMA 0.4542 (NRMSE) 100 [30]
SANTA FE LASER 0.0184 (NMSE) 50 [28]

0.00819 (NMSE) 200 [28]
HENON MAP 0.00975 (NMSE) 50 [28]

0.00868 (NMSE) 200 [28]
FREEDMAN’S 0.0004302 (MSE) 40 [31]

Table 3: Accuracy of the ESN model for the benchmark
problems. Second column shows the accuracy reached by
the single ESN, third column refers the reservoir size and the
last column shows a bibliographic reference. In the case of
the Freedman’s non linear time data, the reservoir initializa-
tion was done using the Scale Invariant Map method [31],
and the Mean Square Error (MSE) was the error measure.
In the case of 30th NARMA, the authors initialize the reser-
voir using permutation matrices. The error measure was the
Normalized Root Square Error (NRMSE) [30]. In the other
benchmarks problems, the authors control some reservoir pa-
rameters such as: spectral radius and reservoir matrix den-
sity.
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M = 3 M = 4 M = 5 BAS. ESN
Nx (1.0E-12) (1.0E-13) (1.0E-13) (1.0E-12)
6 0.297367 0.131036 0.131036 0.288720
7 0.191883 0.131036 0.131036 0.064412
8 0.142289 0.131036 0.131036 0.572728
9 0.160910 0.131036 0.131036 0.182942

10 0.203845 0.131036 0.131036 0.278237
11 0.272649 0.131036 0.131035 0.524017
12 0.488265 0.131036 0.131036 0.459002

Table 4: Train set performance of the Henon Map data set.
First column indicates the number of neurons in the reser-
voir. The columns 2, 3 and 4 show the NMSE obtained with
L2-Boost with M epochs (M = 3, 4 and 5), respectively.
Column 5 shows the accuracy of the baseline approach. That
is the accuracy average among 30 ESN predictions. The
columns are written using a scientific notation.
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Figure. 1: Test set accuracy reached for the 10th order
NARMA data set. The vertical axis of the graph shows the
NMSE accuracy, and the horizontal axis presents some val-
ues of the reservoir size. We compare the accuracy of L2-
Boost: M = 4, 5 and 6 with the baseline approach averaging
30 ESNs.

V. Conclusions and Future Work

At the beginning of the 2000s, an efficient technique to train
and design a RNN was developed under the name of Echo
State Network (ESN). This approach overcome the limita-
tions to train RNN using the gradient descent method. The
performance of an ESN is highly dependent on its parameters
and pattern of connectivity of the hidden-hidden weights Be-
sides, the network setting can be computational expensive, in
particular to compute the spectral radius of the hidden-hidden
weight matrix.
In this article, we investigated boosting ideas with ESNs, in
order to built a robust new learning tool. In particular, we
studied the utilization of L2-Boost with random initialized
ESNs. We merge a set of weak single ESNs. We call weak
ESNs because they are random initialized, and we do not
use extra computational effort for tuning the initial hidden-
hidden weights.
In spite of the realization of numerous tests, we can not af-
firm that L2-Boost with ESNs performs better than a single
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Figure. 2: The accuracy reached on the training set of the
30th order NARMA data. The vertical axis of the graph
shows the NMSE accuracy, and the horizontal axis presents
some values of the reservoir size. We compare the accuracy
of L2-Boost: M = 6, 8 and 10 with the baseline approach
averaging 30 ESNs.
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Figure. 3: The accuracy reached for the 30th order NARMA
data set. The vertical axis of the graph shows the NMSE
accuracy, and the horizontal axis presents some values of the
reservoir size. We compare the accuracy of L2-Boost: M =
6, 8 and 10 with the baseline approach averaging 30 ESNs.

well-initialized ESN (according the results presented in the
RC literature). However, the main advantage of the L2-Boost
with weak ESNs is that the procedure is automatic and does
not require the computational effort of computing the spectra
of the hidden-hidden weight matrix. Additionally, the proce-
dure has a control parameter for the overfitting phenomena.
In a future work we will test the model using another tech-
nique for decrease the generalization error, as well as on a
more number of benchmark problems. Additionally, we can
test the approach using another supervised learning tool for
the readout structure.
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